Skip to main content
Log in

Effect of chemical exfoliation on the specific capacitance of MoS2 decorated conducting polymer electrodes for supercapacitor applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The present communication introduces a modified high-performance supercapacitor electrode with chemically exfoliated MoS2@PANI nanocomposite as a solution for the upcoming energy needs. We put forward a chemical exfoliation route for increasing the effective surface area of hydrothermally synthesized MoS2, and effective encapsulation of a conducting polymer, polyaniline (PANI), was introduced via in-situ chemical oxidative polymerization of aniline monomer. The structural behaviors were systematically explored by X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR), and the surface characteristics were analyzed by Field emission scanning electron microscopy (FE-SEM), and Brunauer–Emmett–Teller (BET) surface area measurements. The effect of exfoliation on capacitive performance was analyzed by the electrochemical study of two material platforms, MoS2@PANI and MoS2 ex@PANI, in a weakly acidic medium of 1 M H3PO4. The unique structure of MoS2 ex@PANI nanocomposite maximizes the ionic contact between the exfoliated MoS2 and PANI with electrolyte, which synergistically combines the double-layer and pseudocapacitive behavior of the individual compounds, thereby improving the conductivity and energy storage performance. The binary exfoliated composite electrodes revealed an excellent specific capacitance of 277 F g−1 at a scan rate of 5 mV s−1 superior to that of the MoS2@PANI electrode. A symmetric supercapacitor device was successfully developed and achieved improved capacitance of 128 F g−1 with impressive cyclic stability (98%) even after 15,000 cycles. The MoS2 ex@PANI nanocomposite becomes a future solution for existing supercapacitor electrodes for energy storage in lightweight wearable electronics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data generated during the current study are available from the corresponding author upon reasonable request.

References

  1. Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L.-C. Qin, Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon NY. 49, 2917–2925 (2011). https://doi.org/10.1016/j.carbon.2011.02.068

    Article  Google Scholar 

  2. R.K. Mishra, D. Mishra, M. Krishnaiah, S.Y. Kim, S.H. Jin, Self-discharge and voltage-holding in symmetric supercapacitors for energy storage based on branch-like MoS2 nanomaterial electrodes. Ceram. Int. 47, 11231–11239 (2021). https://doi.org/10.1016/j.ceramint.2020.12.248

    Article  Google Scholar 

  3. J.H. Choi, G.D. Park, Y.C. Kang, Potassium-ion storage mechanism of MoS2-WS2-C microspheres and their excellent electrochemical properties. Chem. Eng. J. 408, 127278 (2021). https://doi.org/10.1016/j.cej.2020.127278

    Article  Google Scholar 

  4. L. Ren, G. Zhang, Z. Yan, L. Kang, H. Xu, F. Shi, Z. Lei, Z.-H. Liu, Three-dimensional tubular MoS2/PANI hybrid electrode for high rate performance supercapacitor. ACS Appl. Mater. Interfaces 7, 28294–28302 (2015). https://doi.org/10.1021/acsami.5b08474

    Article  Google Scholar 

  5. K.S. Kumar, N. Choudhary, Y. Jung, J. Thomas, Recent advances in two-dimensional nanomaterials for supercapacitor electrode applications. ACS Energy Lett. 3, 482–495 (2018). https://doi.org/10.1021/acsenergylett.7b01169

    Article  Google Scholar 

  6. P. Nakhanivej, Q. Dou, P. Xiong, H.S. Park, Two-dimensional pseudocapacitive nanomaterials for high-energy- and high-power-oriented applications of supercapacitors. Acc Mater Res. 2, 86–96 (2021). https://doi.org/10.1021/accountsmr.0c00070

    Article  Google Scholar 

  7. S.M. Oh, S.-J. Hwang, Recent advances in two-dimensional inorganic nanosheet-based supercapacitor electrodes. J. Korean Ceram. Soc. 57, 119–134 (2020). https://doi.org/10.1007/s43207-020-00023-2

    Article  Google Scholar 

  8. A. Philip, A. Ruban Kumar, Recent advancements and developments employing 2D-materials in enhancing the performance of electrochemical supercapacitors: a review. Renew. Sust. Energy Rev. 182, 113423 (2023). https://doi.org/10.1016/j.rser.2023.113423

    Article  Google Scholar 

  9. M. dos Santos Klem, G. Leonardo Nogueira, N. Alves, High-performance symmetric supercapacitor based on molybdenum disulfide/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) composite electrodes deposited by spray-coating. Int. J. Energy Res. 45, 9021–9038 (2021). https://doi.org/10.1002/er.6434

    Article  Google Scholar 

  10. J.M. Soon, K.P. Loh, Electrochemical double-layer capacitance of MoS2 nanowall films. Electrochem. Solid-State Lett.. Solid-State Lett. 10, A250 (2007). https://doi.org/10.1149/1.2778851

    Article  Google Scholar 

  11. Y.K. Kim, H. Jeon, D. Han, K.-Y. Shin, High-yield preparation of molybdenum disulfide/polypyrrole hybrid nanomaterial with non-covalent interaction and its supercapacitor application. J. Alloys Compd. 868, 159263–159268 (2021). https://doi.org/10.1016/j.jallcom.2021.159263

    Article  Google Scholar 

  12. P. Tiwari, D. Janas, R. Chandra, Ultrahigh rate supercapacitor based on self-standing carbon nanotubes supported vertically aligned MoS2 sheets. MRS Adv. 5, 2495–2502 (2020). https://doi.org/10.1557/adv.2020.338

    Article  Google Scholar 

  13. H. Li, Y. Zhao, C.-A. Wang, MoS2/CoS2 composites composed of CoS2 octahedrons and MoS2 nano-flowers for supercapacitor electrode materials. Front. Mater. Sci. 12, 354–360 (2018). https://doi.org/10.1007/s11706-018-0437-9

    Article  ADS  Google Scholar 

  14. T. Wang, S. Chen, H. Pang, H. Xue, Y. Yu, MoS2-based nanocomposites for electrochemical energy storage. Adv. Sci. 4, 1600289–1600297 (2017). https://doi.org/10.1002/advs.201600289

    Article  Google Scholar 

  15. N. Joseph, P.M. Shafi, A.C. Bose, Recent advances in 2D-MoS2 and its composite nanostructures for supercapacitor electrode application. Energy Fuels 34, 6558–6597 (2020). https://doi.org/10.1021/acs.energyfuels.0c00430

    Article  Google Scholar 

  16. G.S. Bang, K.W. Nam, J.Y. Kim, J. Shin, J.W. Choi, S.-Y. Choi, Effective liquid-phase exfoliation and sodium ion battery application of MoS2 nanosheets. ACS Appl. Mater. Interfaces 6, 7084–7089 (2014). https://doi.org/10.1021/am4060222

    Article  Google Scholar 

  17. G. Ma, H. Peng, J. Mu, H. Huang, X. Zhou, Z. Lei, In situ intercalative polymerization of pyrrole in graphene analogue of MoS2 as advanced electrode material in supercapacitor. J. Power. Sources 229, 72–78 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.088

    Article  Google Scholar 

  18. S.A. Ansari, H. Fouad, S.G. Ansari, M.P. Sk, M.H. Cho, Mechanically exfoliated MoS2 sheet coupled with conductive polyaniline as a superior supercapacitor electrode material. J. Colloid Interface Sci. 504, 276–282 (2017). https://doi.org/10.1016/j.jcis.2017.05.064

    Article  ADS  Google Scholar 

  19. J. Wang, Z. Wu, K. Hu, X. Chen, H. Yin, High conductivity graphene-like MoS2/polyaniline nanocomposites and its application in supercapacitor. J. Alloys Compd. 619, 38–43 (2015). https://doi.org/10.1016/j.jallcom.2014.09.008

    Article  Google Scholar 

  20. Q. Yuan, M.-G. Ma, Conductive polypyrrole incorporated nanocellulose/MoS2 film for preparing flexible supercapacitor electrodes. Front. Mater. Sci. 15, 227–240 (2021). https://doi.org/10.1007/s11706-021-0549-5

    Article  Google Scholar 

  21. C. Yang, Z. Chen, I. Shakir, Y. Xu, H. Lu, Rational synthesis of carbon shell coated polyaniline/MoS2 monolayer composites for high-performance supercapacitors. Nano Res. 9, 951–962 (2016). https://doi.org/10.1007/s12274-016-0983-3

    Article  Google Scholar 

  22. J. Wang, Q. Luo, C. Luo, H. Lin, R. Qi, N. Zhong, H. Peng, High-performance supercapacitor electrode based on a nanocomposite of polyaniline and chemically exfoliated MoS2 nanosheets. J. Solid-State Electrochem. 21, 2071–2077 (2017). https://doi.org/10.1007/s10008-017-3536-0

    Article  Google Scholar 

  23. M. Maqsood, S. Afzal, A. Shakoor, N.A. Niaz, A. Majid, N. Hassan, H. Kanwal, Electrochemical properties of PANI/MoS2 nanosheet composite as an electrode materials. J. Mater. Sci. Mater. Electron. 29, 16080–16087 (2018). https://doi.org/10.1007/s10854-018-9697-5

    Article  Google Scholar 

  24. Y. Xia, Y. Wang, C. Hu, X. Feng, Conductivity and tribological properties of IL-PANI/WS2 composite material in lithium complex grease. Friction. 11, 977–991 (2023). https://doi.org/10.1007/s40544-022-0638-1

    Article  Google Scholar 

  25. J. Ma, H. Ren, Z. Liu, J. Zhou, Y. Wang, B. Hu, Y. Liu, L.B. Kong, T. Zhang, Embedded MoS2-PANI nanocomposites with advanced microwave absorption performance. Compos. Sci. Technol. 198, 108239 (2020). https://doi.org/10.1016/j.compscitech.2020.108239

    Article  Google Scholar 

  26. S. Krithika, J. Balavijayalakshmi, Investigation of structural, morphological and electrochemical properties of MoS2/PANI/SnO2 nanocomposites for energy storage applications. Inorg. Chem. Commun.. Chem. Commun. 148, 110324 (2023). https://doi.org/10.1016/j.inoche.2022.110324

    Article  Google Scholar 

  27. J. Dai, Y. Lv, J. Zhang, D. Zhang, H. Xie, C. Guo, A. Zhu, Y. Xu, M. Fan, C. Yuan, L. Dai, Effect of morphology and phase engineering of MoS2 on electrochemical properties of carbon nanotube/polyaniline@MoS2 composites. J. Colloid Interface Sci. 590, 591–600 (2021). https://doi.org/10.1016/j.jcis.2021.01.051

    Article  ADS  Google Scholar 

  28. Q. Chen, F. Xie, G. Wang, K. Ge, H. Ren, M. Yan, Q. Wang, H. Bi, Hybrid MoS2@PANI materials for high-performance supercapacitor electrode. Ionics (Kiel). 27, 4083–4096 (2021). https://doi.org/10.1007/s11581-021-04147-1

    Article  Google Scholar 

  29. K. Krishnamoorthy, G.K. Veerasubramani, S. Radhakrishnan, S.J. Kim, Supercapacitive properties of hydrothermally synthesized sphere like MoS2 nanostructures. Mater. Res. Bull. 50, 499–502 (2014). https://doi.org/10.1016/j.materresbull.2013.11.019

    Article  Google Scholar 

  30. N. Islam, S. Wang, J. Warzywoda, Z. Fan, Fast supercapacitors based on vertically oriented MoS2 nanosheets on plasma pyrolyzed cellulose filter paper. J. Power. Sources 400, 277–283 (2018). https://doi.org/10.1016/j.jpowsour.2018.08.049

    Article  ADS  Google Scholar 

  31. H. Gupta, S. Chakrabarti, S. Mothkuri, B. Padya, T.N. Rao, P.K. Jain, High performance supercapacitor based on 2D-MoS2 nanostructures. Mater. Today Proc. 26, 20–24 (2020). https://doi.org/10.1016/j.matpr.2019.04.198

    Article  Google Scholar 

  32. X. Fan, P. Xu, D. Zhou, Y. Sun, Y.C. Li, M.A.T. Nguyen, M. Terrones, T.E. Mallouk, Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion. Nano Lett. 15, 5956–5960 (2015). https://doi.org/10.1021/acs.nanolett.5b02091

    Article  ADS  Google Scholar 

  33. J. Yang, M. Ye, A. Han, Y. Zhang, K. Zhang, Preparation and electromagnetic attenuation properties of MoS2–PANI composites: a promising broadband absorbing material. J. Mater. Sci. Mater. Electron. 30, 292–301 (2019). https://doi.org/10.1007/s10854-018-0292-6

    Article  Google Scholar 

  34. M. Tomy, A. Ambika Rajappan, V. VM, X. ThankappanSuryabai, Emergence of novel 2D materials for high-performance supercapacitor electrode applications: a brief review. Energy Fuels 35, 19881–19900 (2021). https://doi.org/10.1021/acs.energyfuels.1c02743

    Article  Google Scholar 

  35. A.R. Athira, S. Deepthi, T.S. Xavier, Impact of an anionic surfactant on the enhancement of the capacitance characteristics of polyaniline-wrapped graphene oxide hybrid composite. Bull. Mater. Sci. 44, 178 (2021). https://doi.org/10.1007/s12034-021-02481-8

    Article  Google Scholar 

  36. L. Xu, L. Ma, T. Rujiralai, X. Zhou, S. Wu, M. Liu, Hierarchical MoS2 microspheres prepared through a zinc ion-assisted hydrothermal route as an electrochemical supercapacitor electrode. RSC Adv. 7, 33937–33943 (2017). https://doi.org/10.1039/C7RA05055K

    Article  ADS  Google Scholar 

  37. R.B. Pujari, A.C. Lokhande, A.R. Shelke, J.H. Kim, C.D. Lokhande, Chemically deposited nano grain composed MoS2 thin films for supercapacitor application. J. Colloid Interface Sci. 496, 1–7 (2017). https://doi.org/10.1016/j.jcis.2016.11.026

    Article  ADS  Google Scholar 

  38. C. Zhao, J.M. Ang, Z. Liu, X. Lu, Alternately stacked metallic 1T-MoS2/polyaniline heterostructure for high-performance supercapacitors. Chem. Eng. J. 330, 462–469 (2017). https://doi.org/10.1016/j.cej.2017.07.129

    Article  Google Scholar 

  39. A. Ambrosi, Z. Sofer, M. Pumera, Lithium intercalation compound dramatically influences the electrochemical properties of exfoliated MoS2. Small 11, 605–612 (2015). https://doi.org/10.1002/smll.201400401

    Article  Google Scholar 

  40. C.P. Veeramalai, F. Li, Y. Liu, Z. Xu, T. Guo, T.W. Kim, Enhanced field emission properties of molybdenum disulphide few-layer nanosheets synthesized by hydrothermal method. Appl. Surf. Sci. 389, 1017–1022 (2016). https://doi.org/10.1016/j.apsusc.2016.08.031

    Article  ADS  Google Scholar 

  41. K.C. Lalithambika, K. Shanmugapriya, S. Sriram, Photocatalytic activity of MoS2 nanoparticles: an experimental and DFT analysis. Appl. Phys. A 125, 817 (2019). https://doi.org/10.1007/s00339-019-3120-9

    Article  ADS  Google Scholar 

  42. G. Tontini, G.D.L. Semione, C. Bernardi, R. Binder, J.D.B. de Mello, V. Drago, Synthesis of nanostructured flower-like MoS and its friction properties as additive in lubricating oils. Ind. Lubr. Tribol. 68, 658–664 (2016). https://doi.org/10.1108/ILT-12-2015-0194

    Article  Google Scholar 

  43. D. Wang, X. Zhang, Y. Shen, Z. Wu, Ni-doped MoS2 nanoparticles as highly active hydrogen evolution electrocatalysts. RSC Adv. 6, 16656–16661 (2016). https://doi.org/10.1039/C6RA02610A

    Article  ADS  Google Scholar 

  44. Y. Zhong, T. Shi, Y. Huang, S. Cheng, C. Chen, G. Liao, Z. Tang, Three-dimensional MoS2/graphene aerogel as binder-free electrode for li-ion battery. Nanoscale Res. Lett. 14, 85 (2019). https://doi.org/10.1186/s11671-019-2916-z

    Article  ADS  Google Scholar 

  45. Md.H. Ahmad, Md.R. Akhond, Md.J. Islam, M. Rahaman, R.B. Alam, A. Ul-hamid, M.R. Islam, A combined experimental and theoretical study on the structural, optical and electronic properties of hetero interface-functionalized MoS2 /Co3O4 nanocomposite. Surfaces Interfaces 37, 102750 (2023). https://doi.org/10.1016/j.surfin.2023.102750

    Article  Google Scholar 

  46. Md.H. Ahmad, R.B. Alam, A. Ul-hamid, S.F.U. Farhad, M.R. Islam, Hydrothermal synthesis of Co3O4 nanoparticles decorated three dimensional MoS2 nanoflower for exceptionally stable supercapacitor electrode with improved capacitive performance. J. Energy Storage. 47, 103551 (2022). https://doi.org/10.1016/j.est.2021.103551

    Article  Google Scholar 

  47. T. Yang, H. Chen, T. Ge, J. Wang, W. Li, K. Jiao, Highly sensitive determination of chloramphenicol based on thin-layered MoS2/polyaniline nanocomposite. Talanta 144, 1324–1328 (2015). https://doi.org/10.1016/j.talanta.2015.08.004

    Article  Google Scholar 

  48. S.S. Karade, D.P. Dubal, B.R. Sankapal, MoS2 ultrathin nanoflakes for high performance supercapacitors: room temperature chemical bath deposition (CBD). RSC Adv. 6, 39159–39165 (2016). https://doi.org/10.1039/C6RA04441G

    Article  ADS  Google Scholar 

  49. K.-J. Huang, J.-Z. Zhang, G.-W. Shi, Y.-M. Liu, Hydrothermal synthesis of molybdenum disulfide nanosheets as supercapacitors electrode material. Electrochim. Acta. Acta. 132, 397–403 (2014). https://doi.org/10.1016/j.electacta.2014.04.007

    Article  ADS  Google Scholar 

  50. W. Peng, W. Wang, G. Han, Y. Huang, Y. Zhang, Fabrication of 3D flower-like MoS2/graphene composite as high-performance electrode for capacitive deionization. Desalination 473, 114191 (2020). https://doi.org/10.1016/j.desal.2019.114191

    Article  Google Scholar 

  51. A.R. Athira, T. Merin, K. Anupama, K.A. Ann Mary, T.S. Xavier, Surfactant incorporated polyaniline/Co3O4/rGO ternary hybrid composite symmetric supercapacitors for efficient energy storage applications. Diam. Relat. Mater.Relat. Mater. 130, 109475 (2022). https://doi.org/10.1016/j.diamond.2022.109475

    Article  ADS  Google Scholar 

  52. A.R. Athira, V.M. Vimuna, M. Tomy, K.V.D. Babu, S. Alex, T.S. Xavier, Surfactant intercalated polypyrrole-exfoliated graphene oxide hybrid thin film symmetric supercapacitor. J. Mater. Sci. 57, 6749–6762 (2022). https://doi.org/10.1007/s10853-022-07075-1

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research work was supported by DST-FIST, Centre for Common Instrumentation Facility (CCIF), Govt. College for Women Thiruvananthapuram, and Government project ‘‘Performance Linked Encouragement for Academic Studies Endeavor (PLEASE)” for instrumentation. One of the authors (Merin Tomy) thanks the University of Kerala for the scholarship.

Author information

Authors and Affiliations

Authors

Contributions

MT designed and performed experiments, analysis of results, and manuscript writing. AMA aided in interpreting results and worked on the manuscript. XTS supervision and editing.

Corresponding author

Correspondence to T. S. Xavier.

Ethics declarations

Conflict of interest

The authors declare that there is no competing interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomy, M., Anu, M.A. & Xavier, T.S. Effect of chemical exfoliation on the specific capacitance of MoS2 decorated conducting polymer electrodes for supercapacitor applications. Appl. Phys. A 129, 818 (2023). https://doi.org/10.1007/s00339-023-07098-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07098-8

Keywords

Navigation