Skip to main content
Log in

Numerical study on grain evolution of gradient-structured aluminum matrix composites induced by graphene nanoplatelets

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Gradient composite materials are widely used because of their excellent combination of strength and toughness. Nano-reinforced Al-matrix composite material is one of the most applied structures. The primary goal of this work is to study the effect of graphene nanoplatelets (GNPs) on the grain evolution of gradient-structured Al-matrix composites via simulation. The grain growth is studied using an improved and verified Monte Carlo algorithm. The effects of three distribution forms of GNPs are designed and investigated: linear, concave and discontinuous, respectively. The influence of gradient-distributed GNPs on the dynamic process of grain morphology evolution in composites has been investigated numerically for the first time. Gradient grain sizes in the 90–470 nm range are obtained, and the maximum gradient value reaches 1.833 nm/nm. The connections between grain morphologies, grain sizes, and the spatial distributions of GNPs have been studied in detail. The simulated results show that the grain evolution process is significantly different under the three conditions. The grain size variation of composites g with GNPs concentration vG is nonlinear, and they satisfy the predicted relation as g = 305.5e(−vG/2.77) + 90.54 under the parameters studied in this model. The quantitative relationship between grain size gradient and GNPs distribution is also found. This work provides a theoretical method for gradient microstructure design of GNPs reinforced Al-matrix composites. For preparation requirements with specific grain size and gradient values, the reinforcement distribution can be determined quantitatively. Moreover, this model can be extended to grain evolution for a wider range of matrix and nano-reinforcements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time, as the data also forms part of an ongoing study.

References

  1. A. Jérusalem, W. Dickson, M.J. Pérez-Martín et al., Grain size gradient length scale in ballistic properties optimization of functionally graded nanocrystalline steel plates. Scripta Mater. 69, 773–776 (2013). https://doi.org/10.1016/j.scriptamat.2013.08.025

    Article  Google Scholar 

  2. K. Lu, Making strong nanomaterials ductile with gradients. Science 345(6203), 1455–1456 (2014). https://doi.org/10.1126/science.1255940

    Article  ADS  Google Scholar 

  3. X. Xin, Z.Y. Fei, T. Ma et al., Circular graphene platelets with grain size and orientation gradients grown by chemical vapor deposition. Adv. Mater. 29, 1605451 (2017). https://doi.org/10.1002/adma.201605451

    Article  Google Scholar 

  4. P.H. Cao, The strongest size in gradient nanograined metals. Nano Lett. 20, 1440–1446 (2020). https://doi.org/10.1021/acs.nanolett.9b05202

    Article  ADS  Google Scholar 

  5. L. Romero-Resendiz, M. El-Tahawy, T. Zhang et al., Heterostructured stainless steel: Properties, current trends, and future perspectives. Mater. Sci. Eng. R 15, 100691 (2022). https://doi.org/10.1016/j.mser.2022.100691

    Article  Google Scholar 

  6. W.T. Sun, B. Wu, H. Fu et al., Combining gradient structure and supersaturated solid solution to achieve superior mechanical properties in WE43 magnesium alloy. J. Mater. Sci. Technol. 99, 223–238 (2022). https://doi.org/10.1016/j.jmst.2021.04.074

    Article  Google Scholar 

  7. W. Chen, Z.S. You, N.R. Tao et al., Mechanically-induced grain coarsening in gradient nano-grained copper. Acta Mater. 125, 255–264 (2017). https://doi.org/10.1016/j.actamat.2016.12.006

    Article  ADS  Google Scholar 

  8. H. Li, J.P. Wang, R.A. Suilo et al., Grain-size gradient structure by abnormal grain growth. MRS Commun. 11, 62–69 (2021). https://doi.org/10.1557/s43579-021-00014-2

    Article  Google Scholar 

  9. T.H. Fang, W.L. Li, N.R. Tao et al., Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 331, 1587–1590 (2011). https://doi.org/10.1126/science.1200177

    Article  ADS  Google Scholar 

  10. X.L. Wu, P. Jiang, L. Chen et al., Extraordinary strain hardening by gradient structure. Proc. Natl. Acad. Sci. USA 111(20), 7197–7201 (2014). https://doi.org/10.1073/pnas.1324069111

    Article  ADS  Google Scholar 

  11. Y.F. Wang, M.S. Wang, X.T. Fang et al., Extra strengthening in a coarse/ultrafine grained laminate: Role of gradient interfaces. Int. J. Plast. 123, 196–207 (2019). https://doi.org/10.1016/j.ijplas.2019.07.019

    Article  Google Scholar 

  12. F. Zhao, J.H. Xie, Y.K. Zhu et al., A novel dynamic technique to form reverse grain size gradient microstructure in pure copper. Mater. Lett. 291, 129581 (2021). https://doi.org/10.1016/j.matlet.2021.129581

    Article  Google Scholar 

  13. C.M. Bishop, S.P. Mucalo, M.V. Kral et al., Continuous grain size gradients in austenitic incoloy 800H: Design, processing, and characterization. Metall. and Mater. Trans. A 51A, 1719–1731 (2020). https://doi.org/10.1007/s11661-019-05622-1

    Article  ADS  Google Scholar 

  14. Y. Lin, J. Pan, H.F. Zhou et al., Mechanical properties and optimal grain size distribution profile of gradient grained nickel. Acta Mater. 153, 279–289 (2018). https://doi.org/10.1016/j.actamat.2018.04.065

    Article  ADS  Google Scholar 

  15. J.K. Lee, F.R. Ehrlich, L.A. Crall et al., An analysis for the effect of a grain size gradient on torsional and tensile properties. Metall. Trans. A 19A, 329–335 (1988). https://doi.org/10.1007/BF02652542

    Article  ADS  Google Scholar 

  16. B.H. Cheong, J. Lin, A.A. Ball, Modelling the effects of grain-size gradients on necking in superplastic forming. J. Mater. Process. Technol. 134, 10–18 (2003). https://doi.org/10.1016/S0924-0136(02)00216-9

    Article  Google Scholar 

  17. H.X. Jin, J.Q. Zhou, Y.Q. Chen, Grain size gradient and length scale effect on mechanical behaviors of surface nanocrystalline metals. Mater. Sci. Eng. A 725, 1–7 (2019). https://doi.org/10.1016/j.msea.2018.03.103

    Article  Google Scholar 

  18. Z.Y. Chen, Y. Chen, Nanocrystalline gradient engineering: Grain evolution and grain boundary networks. Comput. Mater. Sci. 141, 282–292 (2018). https://doi.org/10.1016/j.commatsci.2017.09.047

    Article  Google Scholar 

  19. M. Javanbakht, High pressure phase evolution under hydrostatic pressure in a single imperfect crystal due to nanovoids. Materialia 20, 101199 (2021). https://doi.org/10.1016/j.mtla.2021.101199

    Article  MathSciNet  Google Scholar 

  20. A.M. Roy, Formation and stability of nanosized, undercooled propagating intermediate melt during βδ phase transformation in HMX nanocrystal. EPL 133, 56001 (2021). https://doi.org/10.1209/0295-5075/133/56001

    Article  ADS  Google Scholar 

  21. Z. Ren, Z.P. Pu, D.R. Liu, Prediction of grain-size transition during solidification of hypoeutectic Al-Si alloys by an improved three-dimensional sharp-interface model. Comput. Mater. Sci. 203, 111131 (2022). https://doi.org/10.1016/j.commatsci.2021.111131

    Article  Google Scholar 

  22. D.B. Miracle, Metal matrix composites—From science to technological significance. Compos. Sci. Technol. 65, 2526–2540 (2005). https://doi.org/10.1016/j.compscitech.2005.05.027

    Article  Google Scholar 

  23. D. Mandal, S. Viswanathan, Effect of heat treatment on microstructure and interface of SiC particle reinforced 2124 Al matrix composite. Mater. Charact. 85, 73–81 (2013). https://doi.org/10.1016/j.matchar.2013.08.014

    Article  Google Scholar 

  24. S. Dixit, A. Mahata, D.R. Mahapatra et al., Multi-layer graphene reinforced aluminum—Manufacturing of high strength composite by friction stir alloying. Compos. B 136, 63–71 (2018). https://doi.org/10.1016/j.compositesb.2017.10.028

    Article  Google Scholar 

  25. T.W. Dai, Z. Yu, S.W. Yuan et al., Gradient structure polyimide/graphene composite aerogels fabricated by layer-by-layer assembly and unidirectional freezing. Appl. Polymer Sci. 138(14), 50153 (2020). https://doi.org/10.1002/app.50153

    Article  Google Scholar 

  26. Q.F. Fan, X.Z. Yang, H.S. Lei et al., Gradient nanocomposite with metastructure design for broadband radar absorption. Compos. A 129, 105698 (2020). https://doi.org/10.1016/j.compositesa.2019.105698

    Article  Google Scholar 

  27. M.X. Chen, Y. Zhu, Y.B. Pan et al., Gradient multilayer structural design of CNTs/SiO2 composites for improving microwave absorbing properties. Mater. Des. 32, 3013–3016 (2011). https://doi.org/10.1016/j.matdes.2010.12.043

    Article  Google Scholar 

  28. H.H. Wu, L. Liu, Y. Cai et al., A novel gradient graphene composite with broadband microwave absorption fabricated by fused deposition modelling. Mater. Technol. (2020). https://doi.org/10.1080/10667857.2020.1837487

    Article  Google Scholar 

  29. Z. Yan, X.L. Shi, Y.C. Huang et al., Tribological performance of Ni3Al matrix self-lubricating composites containing multilayer graphene prepared by additive manufacturing. J. Mater. Eng. Perform. 27, 167–175 (2018). https://doi.org/10.1007/s11665-017-3094-8

    Article  Google Scholar 

  30. Q. Yu, S.K. Esche, A Monte Carlo algorithm for single phase normal grain growth with improved accuracy and efficiency. Comput. Mater. Sci. 27, 259–270 (2003). https://doi.org/10.1016/S0927-0256(02)00361-0

    Article  Google Scholar 

  31. S. Sista, Z. Yang, T. Debroy, Three-dimensional Monte Carlo simulation of grain growth in the heat-affected zone of a 2.25Cr-1 Mo steel weld. Metall. Mater. Trans. B 31B, 529–536 (2000). https://doi.org/10.1007/s11663-000-0158-0

    Article  Google Scholar 

  32. Q. Wu, Z. Zhang, Precipitation induced grain growth simulation of friction stir welded AA6082-T6. J. Mater. Eng. Perform. 26(5), 2179–2189 (2017). https://doi.org/10.1007/s11665-017-2639-1

    Article  ADS  Google Scholar 

  33. J.H. Gao, R.G. Thompson, Real time-temperature models for monte carlo simulations of normal grain growth. Acta Mater. 44(11), 4565–4570 (1996). https://doi.org/10.1016/1359-6454(96)00079-1

    Article  ADS  Google Scholar 

  34. Q. Wu, J.N. Li, L.C. Long et al., Simulating the effect of temperature gradient on grain growth of 6061–T6 aluminum alloy via Monte Carlo Potts algorithm. CMES 129(1), 99–116 (2021). https://doi.org/10.32604/cmes.2021.015669

    Article  Google Scholar 

  35. Q. Wu, P.F. Cai, L.C. Long, Effect of content and size of reinforcements on the grain evolution of graphene-reinforced aluminum matrix composites. Nanomaterials 11(10), 2550 (2021). https://doi.org/10.3390/nano11102550

    Article  ADS  Google Scholar 

  36. A. Bhadauria, L. Singh, T. Laha, Combined strengthening effect of nanocrystalline matrix and graphene nanoplatelet reinforcement on the mechanical properties of spark plasma sintered aluminum based nanocomposites. Mater. Sci. Eng. A 749, 14–26 (2019). https://doi.org/10.1016/j.msea.2019.02.007

    Article  Google Scholar 

  37. M.C. Şenel, M. Gürbüz, E. Koç, Fabrication and characterization of synergistic Al-SiC-GNPs hybrid composites. Compos. B 154, 1–9 (2018). https://doi.org/10.1016/j.compositesb.2018.07.035

    Article  Google Scholar 

  38. H. Porwal, R. Saggar, P. Tatarko et al., Effect of lateral size of graphene nano-sheets on the mechanical properties and machinability of alumina nano-composites. Ceram. Int. 42, 7533–7542 (2016). https://doi.org/10.1016/j.ceramint.2016.01.160

    Article  Google Scholar 

  39. M. Tabandeh-Khorshid, A. Kumar, E. Omrani et al., Synthesis, characterization, and properties of graphene reinforced metal-matrix nanocomposites. Compos. B 183, 107664 (2020). https://doi.org/10.1016/j.compositesb.2019.107664

    Article  Google Scholar 

  40. M. Khoshghadam-Pireyousefan, R. Rahmanifard, L. Orovcik et al., Application of a novel method for fabrication of graphene reinforced aluminum matrix nanocomposites: Synthesis, microstructure, and mechanical properties. Mater. Sci. Eng. A 772, 138820 (2020). https://doi.org/10.1016/j.msea.2019.138820

    Article  Google Scholar 

  41. P. Kumar, A. Mallick, M.S. Kujur et al., Strength of Mg–3%Al alloy in presence of graphene nano-platelets as reinforcement. Mater. Sci. Technol. 34, 1086–1095 (2018). https://doi.org/10.1080/02670836.2018.1424380

    Article  ADS  Google Scholar 

  42. H. Kwon, J. Mondal, K.A. AlOgab et al., Graphene oxide-reinforced aluminum alloy matrix composite materials fabricated by powder metallurgy. J. Alloy. Compd. 698, 807–813 (2017). https://doi.org/10.1016/j.jallcom.2016.12.179

    Article  Google Scholar 

  43. A.P. Gerlich, M. Yamamoto, T.H. North, Strain rates and grain growth in al 5754 and al 6061 friction stir spot welds. Metall. and Mater. Trans. A 38, 1291–1302 (2007). https://doi.org/10.1007/s11661-007-9155-0

    Article  ADS  Google Scholar 

  44. W.H.V. Geertruyden, W.Z. Misiolek, P.T. Wang, Grain structure evolution in a 6061 aluminum alloy during hot torsion. Mater. Sci. Eng. A 419, 105–114 (2006). https://doi.org/10.1016/j.msea.2005.12.018

    Article  Google Scholar 

  45. M. Khan, R.U. Din, A. Wadood et al., Effect of graphene nanoplatelets on the physical and mechanical properties of Al6061 in fabricated and T6 thermal conditions. J. Alloy. Compd. 790, 1076–1091 (2019). https://doi.org/10.1016/j.jallcom.2019.03.222

    Article  Google Scholar 

  46. K.J. Ko, A.D. Rollett, N.M. Hwang, Abnormal grain growth of Goss grains in Fe–3% Si steel driven by sub-boundary-enhanced solid-state wetting: Analysis by Monte Carlo simulation. Acta Mater. 58, 4414–4423 (2010). https://doi.org/10.1016/j.actamat.2010.04.038

    Article  ADS  Google Scholar 

  47. S. Mohapatra, R. Prasad, J. Jain, Temperature dependence of abnormal grain growth in pure magnesium. Mater. Lett. 283, 128851 (2021). https://doi.org/10.1016/j.matlet.2020.128851

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (12102016) and the National Key Research and Development Program of China (2018YFB0703500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wu.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Long, L. Numerical study on grain evolution of gradient-structured aluminum matrix composites induced by graphene nanoplatelets. Appl. Phys. A 128, 1116 (2022). https://doi.org/10.1007/s00339-022-06274-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06274-6

Keywords

Navigation