Skip to main content
Log in

Glass lab-on-a-chip platform fabricated by picosecond laser for testing tumor cells exposed to X-ray radiation

  • S.I. : COLA 2021/2022
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Lab-on-a-chip strategies using miniaturized devices enable cells to be cultured in a tridimensional (3D) space that offers a real model mimicking in vivo environment. One may provide architectural configurations relevant for specific tissues to maintain them at adequate temperature, oxygen levels, and pH during the necessary time intervals for observation. Herein, we propose a miniaturized lab-on-chip glass device suitable for simultaneous dosimetry measurements and evaluation of the biological effects of ionizing radiation on cancer cells. For the 3D fabrication of biologically relevant microenvironment, high repetition rate picosecond laser-assisted etching is applied to create microfluidic networks between sealed cell culture chambers in photo-sensitive glasses (PG). To evaluate the radiation dose, we employed collimated X-ray beams to generate free electrons in the PG samples by photoreduction of Ag ions to Ag atoms. A subsequent thermal treatment applied to the PG induced clustering of precipitated Ag atoms to color the exposed area to brown, which allows us to directly evaluate a threshold of the applied X-ray radiation dose applied directly on chip. Based on our glass biochip, we tested the response of human melanoma cancer cells exposed to various X-ray doses. This lab-on-chip platform is a valuable tool to analyze and validate the cellular response to new irradiation strategies as alternatives to conventional radiotherapy methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2:
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Baskar, K.A. Lee, R. Yeo, K.-W. Yeoh, Int J Med Sci 9, 193 (2012)

    Article  Google Scholar 

  2. R.-A.M. Panganiban, A.L. Snow, R.M. Day, Int. J. Mol. Sci. 14, 15931 (2013)

    Article  Google Scholar 

  3. H. Gelband, P. Jha, R. Sankaranarayanan, et al., editors. Cancer: Disease Control Priorities, Third Edition (Volume 3). Washington (DC): The International Bank for Reconstruction and Development / The World Bank; 2015 Nov 1. Disease Control Priorities • Third Edition. Available from: https://www.ncbi.nlm.nih.gov/books/NBK343634/

  4. B.F. Koontz, F. Verhaegen, D. De Ruysscher, BJR 90, 20160441 (2017)

    Article  Google Scholar 

  5. D. Figeys, D. Pinto, Anal. Chem. 72, 330 (2000)

    Article  Google Scholar 

  6. J. Castillo-León, W.E. Svendsen, Lab-on-a-chip devices and micro-total analysis systems (Springer, Cham, 2014)

    Google Scholar 

  7. N. Chaicharoenaudomrung, P. Kunhorm, P. Noisa, World J Stem Cells 11, 1065 (2019)

    Article  Google Scholar 

  8. M. Chudy, K. Tokarska, E. Jastrzębska, M. Bułka, S. Drozdek, Ł Lamch, K.A. Wilk, Z. Brzózka, Biosens. Bioelectron. 101, 37 (2018)

    Article  Google Scholar 

  9. F.E. Livingston, P.M. Adams, H. Helvajian, Appl. Surf. Sci. 247, 526 (2005)

    Article  ADS  Google Scholar 

  10. T. Hongo, K. Sugioka, H. Niino, Y. Cheng, M. Masuda, I. Miyamoto, H. Takai, K. Midorikawa, J. Appl. Phys. 97, 063517 (2005)

    Article  ADS  Google Scholar 

  11. M.H. Imanieh, B. Eftekhari Yekta, V. Marghussian, A. Aghaei, J. NonCrys. Sol. 354, 3752 (2008)

    Article  ADS  Google Scholar 

  12. F. Jipa, S. Iosub, B. Calin, E. Axente, F. Sima, K. Sugioka, Nanomaterials 8, 583 (2018)

    Article  Google Scholar 

  13. F. Jipa, S. Orobeti, C. Butnaru, M. Zamfirescu, E. Axente, F. Sima, K. Sugioka, Appl. Sci. 10, 8947 (2020)

    Article  Google Scholar 

  14. C. Corbari, A. Champion, M. Gecevičius, M. Beresna, Y. Bellouard, P.G. Kazansky, Opt. Express 21, 3946 (2013)

    Article  ADS  Google Scholar 

  15. S. Karimelahi, L. Abolghasemi, P.R. Herman, Appl. Phys. A 114, 91 (2014)

    Article  ADS  Google Scholar 

  16. X. Li, J. Xu, A. Zhang, H. Peng, J. Zhang, Y. Li, M. Hu, Z. Lin, Y. Song, W. Chu, Z. Wang, Y. Cheng, Opt. Laser Technol. 144, 107413 (2021)

    Article  Google Scholar 

  17. L. Orazi, V. Siciliani, R. Pelaccia, K. Oubellaouch, B. Reggiani, Procedia CIRP 110, 122 (2022)

    Article  Google Scholar 

  18. A. Hendrickx, A. Cozzio, L. Plasswilm, C.M. Panje, Radiat Oncol 15, 174 (2020)

    Article  Google Scholar 

  19. V.J. Thannickal, B.L. Fanburg, American Journal of Physiology-Lung Cellular and Molecular. Physiology 279, L1005 (2000)

    Google Scholar 

  20. J.L. Martindale, N.J. Holbrook, J. Cell. Physiol. 192, 1 (2002)

    Article  Google Scholar 

  21. I. Porosnicu, C.M. Butnaru, I. Tiseanu, E. Stancu, C.V.A. Munteanu, B.I. Bita, O.G. Duliu, F. Sima, Molecules 26, 3403 (2021)

    Article  Google Scholar 

  22. F. Sima, H. Kawano, A. Miyawaki, L. Kelemen, P. Ormos, D. Wu, J. Xu, K. Midorikawa, K. Sugioka, A.C.S. Appl, Bio Mater. 1, 1667 (2018)

    Google Scholar 

  23. P. Montay Gruel, B. Petit, F. Bochud, V. Favaudon, J. Bourhis, M.C. Vozenin, Radiother. Oncol. (2015). https://doi.org/10.1016/S0167-8140(15)40791-1

    Article  Google Scholar 

  24. J. Bourhis, W.J. Sozzi, P.G. Jorge, O. Gaide, C. Bailat, F. Duclos, D. Patin, M. Ozsahin, F. Bochud, J.-F. Germond, R. Moeckli, M.-C. Vozenin, Radiother. Oncol. 139, 18 (2019)

    Article  Google Scholar 

  25. C. DesRosiers, V. Moskvin, A.F. Bielajew, L. Papiez, Phys. Med. Biol. 45, 1781 (2000)

    Article  Google Scholar 

  26. C.M. Desrosiers, Dissertation, An Evaluation of Very High Energy Electron Beams (up to 250 MeV) in Radiation Therapy (Purdue University, 2005) AAI3166611

    Google Scholar 

Download references

Acknowledgements

This research was supported by IFA (Institute of Atomic Physics) through ELI-RO_2020_11 Project, No. 01/2020 and Romanian Ministry of Education and Research, under Romanian National Nucleus Program LAPLAS VI under Contract No. 16N/2019. This work has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 871124 Laserlab-Europe.

Funding

The authors have no relevant financial or non-financial interests to disclose. This research received funding from IFA (Institute of Atomic Physics) through ELI-RO_2020_11 Project, No. 01/2020. This work has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 871124 Laserlab-Europe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Sima.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Staicu, C.E., Jipa, F., Porosnicu, I. et al. Glass lab-on-a-chip platform fabricated by picosecond laser for testing tumor cells exposed to X-ray radiation. Appl. Phys. A 128, 770 (2022). https://doi.org/10.1007/s00339-022-05915-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05915-0

Navigation