Skip to main content
Log in

Effect of chromium content on microstructural evolution of CoNiAlW superalloy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Effects of chromium (Cr) content on types and morphologies of various phases of a newly developed Co–Ni–Al–W superalloy (Co-30Ni-6W-9Al-3Ti-1Ta) have been investigated in this study. Microstructural examinations were carried out by field-emission scanning electron microscope (FESEM), electron backscatter diffraction (EBSD), high-resolution transmission electron microscope (HRTEM), and differential thermal analysis (DTA). Round-cornered cubic and cuboidal γ′ was developed in these new Co-based alloys after solutionizing at 1300 °C for 24 h and aging them at 900 °C for 96 h. Addition of 6 at.% Cr caused the formation of a new phase called µ with a stoichiometric formula Co7W6 within the γ matrix. Increasing the Cr content to 10 at.%, the volume fraction of μ phase increased from 0.5 to 3.7%. Further increase in Cr content to 14 at.% caused the formation of another phase, β, with a stoichiometric formula CoAl within the matrix. In addition, the presence of Cr significantly influenced the γ′ morphology and altered it from cuboidal to round corner cuboidal γ′. This was attributed to the reduction of γ/γ′ lattice misfit due to Cr addition. The formation of µ-Co7W6 phase has a pronounced effect on the solvus temperature. Both melting and γ′ solvus temperatures reduced due to the partitioning of elements such as W to μ phase by increasing Cr-content. A Kurdjumov–Sachs orientation relationship was also established between the γ/γ′ phases and β. Simulation of pole figures shows that diffusive transformations can have lattice distortive components, which is expected for martensitic transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.C. Reed, The superalloys, fundamentals. (Cambridge university press, 2006), pp 40.

  2. A. Suzuki, H. Inui, T. M.Pollock: Annu. Rev. Mater. Res. 45:8.1–8.24 (2015)

  3. C. Sims, N. Stoloff, and H. W. (Eds.): Superalloys II, (John Wiley & Sons, Inc, New York. 1987), pp. 104

  4. J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, K. Ishida, Science 312, 90 (2006)

    Article  ADS  Google Scholar 

  5. P. Liu, H. Huang, S. Antonov, C. Wen, D. Xue, H. Chen, L. Li, Qiang Feng. Toshihiro Omori Yanjing Su npj Comput. Mater. 6(1), 1 (2020)

    Article  Google Scholar 

  6. A. Bauer, S. Neumeier, F. Pyczak, M. Goken, Scr. Mater. 63, 1197 (2010)

    Article  Google Scholar 

  7. T.M. Pollock, J. Dibbern, M. Tsunekane, J. Zhu, A. Suzuki, J. Mater. 62, 58 (2010)

    Google Scholar 

  8. K. Shinagawa, T. Omori, K. Oikawa, R. Kainuma, K. Ishida, Scr. Mater. 61, 612 (2009)

    Article  Google Scholar 

  9. E.T. McDevitt, Mater. Sci. Forum 783–786, 1159 (2014)

    Article  Google Scholar 

  10. H.Y. Yan, V.A. Vorontsov, D. Dye, Intermetallics 48, 44 (2014)

    Article  Google Scholar 

  11. F. Xue, M. Wang, and Q. Feng: 12th Int. Symp. Superalloys, 813 (2012)

  12. S. Neumeier, L.P. Freund, M. Goken, Scripta Mater. 109, 104 (2015)

    Article  Google Scholar 

  13. S. Meher, L. Carroll, T. Pollock, M. Carroll, Scripta Mater. 113, 185 (2016)

    Article  Google Scholar 

  14. N. Volz, C.H. Zenk, R. Cherukuri, T. Kalfhaus, M. Weiser, S.K. Makineni, C. Betzing, M. Lenz, B. Gault, S.G. Fries, Metall. Mater. Trans. 1 (2018)

  15. K. Shinagawa, T. Omori, J. Sato, K. Oikawa, I. Ohnuma, R. Kainuma, K. Ishida, Mater. Trans., JIM 49, 1474 (2008)

  16. X. Zhuang, S. Lu, L. Li, Q. Feng, Mater. Sci. Eng. A 780 (2020)

  17. C.A. Stewart, S.P. Murray, A. Suzuki, T.M. Pollock, C.G. Levi, Mater. Des. 189 (2020)

  18. P. Pandey, S. Mukhopadhyay, C. Srivastava, S.K. Makineni, K. Chattopadhyay, Mater. Sci. Eng. A 790 (2020)

  19. Y. Chen, C. Wang, J. Ruan, S. Yang, T. Omori, R. Kainuma, K. Ishida, J. Han, Y. Lu, X. Liu, Acta Mater. 188, 652 (2020)

    Article  ADS  Google Scholar 

  20. W. Li, L. Li, S. Antonov, Q. Feng, Mater. Des. 180 (2019)

  21. E.A. Lass, Metall. Mater. Trans. A 48, 2443 (2017)

    Article  Google Scholar 

  22. T. Omori, K. Oikawa, J. Sato, I. Ohnuma, U.R. Kattner, R. Kainuma, K. Ishida, Intermetallics 32, 274 (2013)

    Article  Google Scholar 

  23. Y. Li, F. Pyczak, M. Oehring, L.wang, Jonathan Paul, U. Lorenz, Zekun Yao, J. Alloys Compd. vol. 729, 266 (2017)

  24. Li. Wang, M. Oehring, U. Lorenz, J. Yang, F. Pyczak, Scripta Mater. 154, 176 (2018)

    Article  Google Scholar 

  25. W. Li, L. Li, S. Antonov, Lu. Fan, Qiang Feng. J. Alloys Compounds 826, 154182 (2020)

    Article  Google Scholar 

  26. D.-W. Chung, J.P. Toinin, E.A. Lass, D.N. Seidman, D.C. Dunand, J. Alloys Compounds 832, 154790 (2020)

    Article  Google Scholar 

  27. M. Knop, V.A. Vorontsov, M.C. Hardy, D. Dye, MATEC Web Conf. 14, 6 (2014)

    Article  Google Scholar 

  28. D.S. Nga, D.-W. Chunga, J.P. Toinina, D.N. Seidmana, David C. Mater. Sci. Eng., A 778, 39108 (2020)

    Google Scholar 

  29. I. Povstugar, C.H. Zenk, R. Li, P.-P. Choi, S. Neumeier, O. Dolotko, M. Hoelzel, M. Göken, D. Raabe, Mater. Sci. Technol. 32, 220 (2016)

    Article  Google Scholar 

  30. A. Bauer, S. Neumeier, F. Pyczak, R.F. Singer, M. Göken, Mater. Sci. Eng. A 550, 333 (2012)

    Article  Google Scholar 

  31. P. Pandey, A.K. Sawant, B. Nithin, Z. Peng, S.K. Makineni, B. Gault, K. Chattopadhyay, Acta Mater. 168, 37 (2019)

    Article  ADS  Google Scholar 

  32. David A. Porter, Kenneth E. Easterling, Mohamed Youssef Abdelraouf Sherif: Phase Transformations in Metals and Alloys, 2009.

  33. J.K. Lee, M.H. Yoo, Metall. Trans. A 23, 1891 (1992)

    Article  Google Scholar 

  34. M. Ooshima, K. Tanaka, N.L. Okamoto, K. Kishida, H. Inui, J. Alloys Compd 508, 71 (2010)

    Article  Google Scholar 

  35. C. Cayron, J. Appl. Cryst. 407, 1179 (2007)

    Article  Google Scholar 

  36. C. Cayron, Y. de Carlan, F. Barcelo, Acta Mater. 58, 1395 (2010)

    Article  ADS  Google Scholar 

  37. A. Bauer, S. Neumeier, F. Pyczak, M. Göken, Superalloys 2012, 695 (2012)

    Article  Google Scholar 

  38. M. Knop, P. Mulvey, F. Ismail, JOM 66, 2495 (2014)

    Article  Google Scholar 

  39. A. Tomaszewska, B. Oleksiak, Metalurgija 57, 91 (2018)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Niroo Research Institute for the provision of the research facilities used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Arabi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Nominal chemical composition and structure of γ, γ׳, µ, and β phases

Appendix: Nominal chemical composition and structure of γ, γ׳, µ, and β phases

Phase

Structure

Composition(s)

γ

FCC

Co, Ni and other elements in solid solution

γ′

L12 (ordered FCC)

Co3(Al,W)

µ

D85

Co7W6

β

B2

CoAl

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fallah Sheykhlari, A., Arabi, H., Boutorabi, S.M.A. et al. Effect of chromium content on microstructural evolution of CoNiAlW superalloy. Appl. Phys. A 128, 719 (2022). https://doi.org/10.1007/s00339-022-05768-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05768-7

Keywords

Navigation