Skip to main content

Advertisement

Log in

Effect of DC negative bias on microstructure and surface morphology of amorphous silicon carbide films prepared by HWP-CVD

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effect of DC negative bias (− Vs) on microstructure and surface morphology of amorphous silicon carbide thin films prepared by helicon wave plasma chemical vapor deposition is reported. Microstructure and surface morphology were obtained by scanning electron microscope (SEM) and atomic force microscope (AFM). The results show that the increase of − Vs on the substrate make a more compact film and lower surface roughness, which can reach 0.56 nm. The XRD analysis reveals that the SiC thin films are of an amorphous structure. Percentages of carbon and silicon atoms (C/Si) were measured by energy dispersive spectrometer (EDS), and the C/Si ratio can reach 1.45. The structural properties of the films were studied by Raman spectroscopy techniques and Fourier transform infrared (FTIR). It is found that the films contain not only Si–C bonds but also Si–CHx bonds. Raman spectra results show that the proportion of disordered carbon in the films decreases with the increase of − Vs. The results of ultra-microhardness tester show that the hardness of the films increases with the increase of − Vs and the maximum mechanical hardness can reach 18.5 GPa at − Vs  = − 60 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Harikrishna, W.A. Lanford et al., J. Nucl. Mater. 514, 154–160 (2018)

    Article  ADS  Google Scholar 

  2. G. Wen, X. Zeng et al., J. Appl. Phys. 115(16), 164303 (2014)

    Article  ADS  Google Scholar 

  3. M. Li, L. Jiang, Y. Sun et al., J. Non-Cryst. Solids 503, 252259 (2018)

    Google Scholar 

  4. E. Chen, G. Du, Y. Zhang et al., Ceram. Int. 40(7), 9791–9797 (2014)

    Article  Google Scholar 

  5. K.E. Bae, K.W. Chae et al., Adv. Eng. Mater. 18(7), 1123–1126 (2016)

    Article  Google Scholar 

  6. J.Y. Fan, X.L. Wu, P.K. Chu, Prog. Mater. Sci. 51(8), 983–1031 (2006)

    Article  Google Scholar 

  7. J. Xu, L. Yang, Y. Rui et al., Solid State Commun. 133(9), 565–568 (2005)

    Article  ADS  Google Scholar 

  8. I.A. Yunaz, K. Hashizume, S. Miyajima et al., Sol. Energy Mater. Sol. Cells 93(6–7), 1056–1061 (2009)

    Article  Google Scholar 

  9. S.Y. Lien, K.W. Weng, J.J. Huang et al., Curr. Appl. Phys. 11(1), 2 (2011)

    Article  ADS  Google Scholar 

  10. A.R. Oliveira, I. Pereyra et al., Mater. Sci. Eng. B 112(2–3), 144–146 (2004)

    Article  Google Scholar 

  11. L.F. Marsal, J. Pallarès et al., Semicond. Sci. Technol. 13(10), 1148 (1999)

    Article  ADS  Google Scholar 

  12. Y. Ji, D. Shan, M. Qian et al., AIP Adv. 6(10), 211103–211662 (2016)

    Article  Google Scholar 

  13. M.M. Rahman et al., J. Appl. Phys. 67(11), 7065 (1990)

    Article  ADS  Google Scholar 

  14. T. Jeong, J.G. Zhu, S. Mao et al., Int J Thermo Phys 33(6), 1000–1012 (2012)

    Article  ADS  Google Scholar 

  15. C.G. Jin, T. Yu, Y. Zhao et al., Phys. E 43(10), 1863–1866 (2011)

    Article  Google Scholar 

  16. Y. Awad, M.A.E. Khakani, D. Brassard et al., Thin Solid Films 518(10), 2738–2744 (2010)

    Article  ADS  Google Scholar 

  17. Y. Qin, T. Feng, Z. Li et al., Appl. Surf. Sci. 257(18), 7993–7996 (2011)

    Article  ADS  Google Scholar 

  18. Y. Cheng, X. Huang, Z. Du et al., Opt. Mater. 73, 723–728 (2017)

    Article  ADS  Google Scholar 

  19. M. Li, L. Jiang, Y. Sun et al., J. Alloy Compd. 753, 320–328 (2018)

    Article  Google Scholar 

  20. G. Wen, X. Zeng, X. Li, J. Non-Cryst. Solids 441, 10–15 (2016)

    Article  ADS  Google Scholar 

  21. T.Y. Huang, C.G. Jin, J. Yu et al., Sci. China Phys. Mech. Astronomy 59(4), 645201 (2016)

    Article  Google Scholar 

  22. S. Logothetidis, I. Alexandrou et al., Surf. Coat. Technol. 80(1–2), 66–71 (1996)

    Article  Google Scholar 

  23. H. Yokoyama, M. Okamoto et al., Jpn. J. Appl. Phys. 30(2), 344–348 (1991)

    Article  ADS  Google Scholar 

  24. D.M. Mattox et al., J. Vacuum Sci. Technol. A Vacuum Surf. Films 7(3), 1105 (1989)

    Article  ADS  Google Scholar 

  25. W. Dai, H.E. Zheng, W.U. Guosong et al., Vacuum 85(2), 231–235 (2010)

    Article  ADS  Google Scholar 

  26. Z. Chen, W. Tian, X. Zhang et al., J Micromech Microeng 27, 11 (2017)

    Google Scholar 

  27. T. Welzel, I. Dani, F. Richter, Plasma Sourc. Sci. Technol. 11(3), 351 (2002)

    Article  ADS  Google Scholar 

  28. J.L. Andújar, E. Pascual, G. Viera et al., Thin Solid Films 317(1–2), 120–123 (1998)

  29. Motohashi M, Ashibu K et al., Electron. Commun. Jpn. Part 2 Electron. 90(2), 9–16 (2007)

  30. M. Li, L. Jiang et al., Optik-Int. J. Light Electron Opt. 176, 401–409 (2019)

    Article  Google Scholar 

  31. E. Ermakova, Y. Rumyantsev, A. Shugurov et al., Appl. Surf. Sci. 339, 102–108 (2015)

    Article  ADS  Google Scholar 

  32. L. Jiang, X. Tan, T. Xiao et al., Thin Solid Films 622, 71–77 (2017)

    Article  ADS  Google Scholar 

  33. Y. Sun, Miyasato T 37(10), 5485–5489 (1998)

    Google Scholar 

  34. C. Casiraghi, A.C. Ferrari et al., Phys. Rev. B Condensed Matter 72(8), 85401 (2005)

    Article  ADS  Google Scholar 

  35. F. Tuinstra, J. Chem. Phys. 53(3), 1126 (1970)

    Article  ADS  Google Scholar 

  36. A. Nawaz, W.G. Mao, C. Lu et al., Ceram. Int. 43(1), 385–391 (2017)

    Article  Google Scholar 

  37. V. Kulikovsky, V. Vorlicek et al., Surf. Coat. Technol. 205(11), 3372–3377 (2011)

    Article  Google Scholar 

  38. O.K. Porada, V.I. Ivashchenko et al., Surf. Coat. Technol. 2004, 122–126 (2004)

    Article  Google Scholar 

  39. J.E. Krzanowski et al., J. Am. Ceram. Soc. 84(3), 672–674 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (nos. 11435009, 11975163), a Project funded by China Postdoctoral Science Foundation (no. 156455), a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and a Project Funded by the Postgraduate Research & Practice Innovation Program of Jiangsu Province (no. KYCX19_1966).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chenggang Jin or Xuemei Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, P., Chen, J., Huang, T. et al. Effect of DC negative bias on microstructure and surface morphology of amorphous silicon carbide films prepared by HWP-CVD. Appl. Phys. A 126, 247 (2020). https://doi.org/10.1007/s00339-020-3349-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3349-3

Keywords

Navigation