Skip to main content
Log in

Electromagnetic interference shielding properties of ferrocene-based polypyrrole/carbon material composites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ferrocene-based polypyrrole (PPyFc) composites containing multi-walled carbon nanotube (MWCNT), reduced graphene oxide (RGO) and carbon black (CB) have been prepared by chemical oxidative polymerization. The prepared PPyFc/MWCNT, PPyFc/RGO and PPyFc/CB composites have been characterized by SEM, TEM, FTIR, XRD, XPS and TGA. Electrical conductivity of the PPyFc/MWCNT, PPyFc/RGO and PPyFc/CB composites has been tested by a typical four-probe method. Furthermore, the electromagnetic interference shielding effectiveness (EMI SE) of the PPyFc/CB, PPyFc/RGO and PPyFc/MWCNT composites has been measured through a coaxial method in the S-band frequency range. The EMI SE achieved for PPyFc/CB, PPyFc/RGO and PPyFc/MWCNT composites was − 11.08 dB, − 11.44 dB and − 23.74 dB, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. F. Shahzad, S. Yu, P. Kumar, J.W. Lee, Y.H. Kim, S.M. Hong, C.M. Koo, Sulfur doped graphene/polystyrene nanocomposites for electromagnetic interference shielding. Compos. Struct. 133, 1267–1275 (2015)

    Google Scholar 

  2. Y.N. Wang, X.D. Cheng, W.L. Song, C.J. Ma, X.M. Bian, M.J. Chen, Hydro-sensitive sandwich structures for self-tunable smart electromagnetic shielding. Chem. Eng. J. 344, 342–352 (2018)

    Google Scholar 

  3. Y. Zhan, Z. Long, X. Wan, J. Zhang, S. He, Y. He, 3D carbon fiber mats/nano-Fe3O4 hybrid material with high electromagnetic shielding performance. Appl. Surf. Sci. 444, 710–720 (2018)

    ADS  Google Scholar 

  4. Y. Li, B. Shen, D. Yi, L. Zhang, W. Zhai, X. Wei, W. Zheng, The influence of gradient and sandwich configurations on the electromagnetic interference shielding performance of multilayered thermoplastic polyurethane/graphene composite foams. Compos. Sci. Technol. 138, 209–216 (2017)

    Google Scholar 

  5. J. Gonzalez-Rubio, E. Arribas, R. Ramirez-Vazquez, A. Najera, Radiofrequency electromagnetic fields and some cancers of unknown etiology: an ecological study. Sci. Total Environ. 599, 834–843 (2017)

    ADS  Google Scholar 

  6. K.K. Kesari, A. Agarwal, R. Henkel, Radiations and male fertility. Reprod. Biol. Endocrinol. 16, 118–134 (2018)

    Google Scholar 

  7. M.L. Pall, Wi-Fi is an important threat to human health. Environ. Res. 164, 405–416 (2018)

    Google Scholar 

  8. A. Nazir, H. Yu, L. Wang, M. Haroon, R.S. Ullah, S. Fahad, K.R. Naveed, T. Elshaarani, A. Khan, M. Usman, Recent progress in the modification of carbon materials and their application in composites for electromagnetic interference shielding. J. Mater. Sci. 53, 8699–8719 (2018)

    ADS  Google Scholar 

  9. S. Biswas, S.S. Panja, S. Bose, Tailored distribution of nanoparticles in bi-phasic polymeric blends as emerging materials for suppressing electromagnetic radiation: challenges and prospects. J. Mater. Chem. C 6, 3120–3142 (2018)

    Google Scholar 

  10. D. Lu, Z. Mo, B. Liang, L. Yang, Z. He, H. Zhu, Z. Tang, X. Gui, Flexible, lightweight carbon nanotube sponges and composites for high-performance electromagnetic interference shielding. Carbon 133, 457–463 (2018)

    Google Scholar 

  11. A.V. Menon, G. Madras, S. Bose, Magnetic alloy-MWNT heterostructure as efficient electromagnetic wave suppressors in soft nanocomposites. ChemistrySelect 2, 7831–7844 (2017)

    Google Scholar 

  12. S.R. Dhakate, K.M. Subhedar, B.P. Singh, Polymer nanocomposite foam filled with carbon nanomaterials as an efficient electromagnetic interference shielding material. RSC Adv. 5, 43036–43057 (2015)

    Google Scholar 

  13. T.K. Gupta, B.P. Singh, R.B. Mathur, S.R. Dhakate, Multi-walled carbon nanotube–grapheme–polyaniline multiphase nanocomposite with superior electromagnetic shielding effectiveness. Nanoscale 6, 842–851 (2014)

    ADS  Google Scholar 

  14. S. Mondal, L. Nayak, M. Rahaman, A. Aldalbahi, T.K. Chaki, D. Khastgir, N.C. Das, An effective strategy to enhance mechanical, electrical, and electromagnetic shielding effectiveness of chlorinated polyethylene-carbon nanofiber nanocomposites. Compos. B Eng. 109, 155–169 (2017)

    Google Scholar 

  15. S. Mondal, P. Das, S. Ganguly, R. Ravindren, S. Remanan, P. Bhawal, T.K. Das, N.C. Das, Thermal-air ageing treatment on mechanical, electrical, and electromagnetic interference shielding properties of lightweight carbon nanotube based polymer nanocomposites. Compos. A Appl. Sci. Manuf. 107, 447–460 (2018)

    Google Scholar 

  16. S.H. Aboutalebi, R. Jalili, D. Esrafilzadeh, M. Salari, Z. Gholamvand, S.A. Yamini, K. Konstantinov, R.L. Shepherd, J. Chen, S.E. Moulton, P.C. Innis, A.I. Minett, J.M. Razal, G.G. Wallace, High-performance multifunctional graphene yarns: toward wearable all-carbon energy storage textiles. ACS Nano 8, 2456–2466 (2014)

    Google Scholar 

  17. H. Wang, K. Zheng, X. Zhang, Y.Y. Wang, C. Xiao, L. Chen, X.Y. Tian, Hollow microsphere-infused porous poly(vinylidene fluoride)/multiwall carbon nanotube composites with excellent electromagnetic shielding and low thermal transport. J. Mater. Sci. 53, 6042–6052 (2018)

    ADS  Google Scholar 

  18. H.Y. Wu, L.C. Jia, D.X. Yan, J.F. Gao, X.P. Zhang, P.G. Ren, Z.M. Li, Simultaneously improved electromagnetic interference shielding and mechanical performance of segregated carbon nanotube/polypropylene composite via solid phase molding. Compos. Sci. Technol. 156, 87–94 (2018)

    Google Scholar 

  19. K. Chizari, M. Arjmand, Z. Liu, U. Sundararaj, D. Therriault, Three-dimensional printing of highly conductive polymer nanocomposites for EMI shielding applications. Mater. Today Commun. 11, 112–118 (2017)

    Google Scholar 

  20. H. Wang, K. Zheng, X. Zhang, T.X. Du, C. Xiao, X. Ding, C. Bao, L. Chen, X.Y. Tian, Segregated poly(vinylidene fluoride)/MWCNTs composites for high-performance electromagnetic interference shielding. Compos. A Appl. Sci. Manuf. 90, 606–613 (2016)

    Google Scholar 

  21. M.H. Al-Saleh, Influence of conductive network structure on the EMI shielding and electrical percolation of carbon nanotube/polymer nanocomposites. Synth. Methods 205, 78–84 (2015)

    ADS  Google Scholar 

  22. H. Zhang, H. Han, X. Xu, Dynamic and regional constructive electromagnetic protecting materials made by MWNT/Fe3O4/poly pyrrole doped vitrimers. Compos. Sci. Technol. 158, 61–66 (2018)

    Google Scholar 

  23. C.H. Cui, D.X. Yan, H. Pang, X. Xu, L.C. Jia, Z.M. Li, Formation of a segregated electrically conductive network structure in a low-melt-viscosity polymer for highly efficient electromagnetic interference shielding. ACS Sustain. Chem. Eng. 4, 4137–4145 (2016)

    Google Scholar 

  24. R. Bera, S. Paria, S.K. Karan, A.K. Das, A. Maitra, B.B. Khatua, NaCl leached sustainable porous flexible Fe3O4 decorated RGO-polyaniline/PVDF composite for durable application against electromagnetic pollution. Express Polym. Lett. 11, 419–433 (2017)

    Google Scholar 

  25. B. Shen, Y. Li, D. Yi, W.T. Zhai, X.C. Wei, W.G. Zheng, Strong flexible polymer/graphene composite films with 3D saw-tooth folding for enhanced and tunable electromagnetic shielding. Carbon 113, 55–62 (2017)

    Google Scholar 

  26. Y. Wu, Z. Wang, X. Liu, X. Shen, Q. Zheng, Q. Xue, J.K. Kim, Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfaces. 9, 9059–9069 (2017)

    Google Scholar 

  27. S.C. Tjong, Polymer composites with graphene nanofillers: electrical properties and applications. J. Nanosci. Nanotechnol. 14, 1154–1168 (2014)

    Google Scholar 

  28. D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P.G. Ren, J.H. Wang, Z.M. Li, Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25, 559–566 (2015)

    Google Scholar 

  29. M.H. Al-Saleh, U. Sundararaj, Electromagnetic interference (EMI) shielding effectiveness of PP/PS polymer blends containing high structure carbon black. Macromol. Mater. Eng. 293, 621–630 (2008)

    Google Scholar 

  30. C. Merlini, G.M.O. Barra, M.D.P.P. da Cunha, I.D.A.S. Ramoa, B.G. Soares, A. Pegoretti, Electrically conductive composites of polyurethane derived from castor oil with polypyrrole-coated peach palm fibers. Polym. Compos. 38, 2146–2155 (2017)

    Google Scholar 

  31. J.M. Thomassin, C. Jérôme, T. Pardoen, C. Bailly, I. Huynen, C. Detrembleur, Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. R Rep. 74, 211–232 (2013)

    Google Scholar 

  32. V.V. Tat'yana, N.E. Oleg, Polypyrrole: a conducting polymer; its synthesis, properties and applications. Russ. Chem. Rev. 66, 443–457 (1997)

    Google Scholar 

  33. L.X. Wang, X.G. Li, Y.L. Yang, Preparation, properties and applications of polypyrroles. React. Funct. Polym. 47, 125–139 (2001)

    Google Scholar 

  34. P. Sambyal, S.K. Dhawan, P. Gairola, S.S. Chauhan, S.P. Gairola, Synergistic effect of polypyrrole/BST/RGO/Fe3O4 composite for enhanced microwave absorption and EMI shielding in X-Band. Curr. Appl. Phys. 18, 611–618 (2018)

    ADS  Google Scholar 

  35. Y. Wang, F.Q. Gu, L.J. Ni, K. Liang, K. Marcus, S.L. Liu, F. Yang, J.J. Chen, Z.S. Feng, Easily fabricated and lightweight PPy/PDA/AgNW composites for excellent electromagnetic interference shielding. Nanoscale 9, 18318–18325 (2017)

    Google Scholar 

  36. A.A.J. Torriero, Characterization of decamethylferrocene and ferrocene in ionic liquids: argon and vacuum effect on their electrochemical properties. Electrochim. Acta 137, 235–244 (2014)

    Google Scholar 

  37. P.J. Chirik, Expanding the boundaries of organometallic chemistry. Organometallics 37, 835–836 (2018)

    Google Scholar 

  38. A. Abd-El-Aziz, E.K. Todd, R.M. Okasha, T.H. Afifi, Organoiron polymers containing azo dyes. Macromol. Symp. 196, 89–99 (2003)

    Google Scholar 

  39. Z. Bicil, P. Camurlu, B. Yucel, B. Becer, Multichromic, ferrocene clicked poly(2,5-dithienylpyrrole)s. J. Polym. Res. 20, 228–234 (2013)

    Google Scholar 

  40. H. Qin, T. Gong, Y. Cho, C. Lee, T. Kim, A conductive copolymer of graphene oxide/poly(1-(3-aminopropyl)pyrrole) and the adsorption of metal ions. Polym. Chem. 5, 4466–4473 (2014)

    Google Scholar 

  41. S. Radhakrishnan, S. Paul, Conducting polypyrrole modified with ferrocene for applications in carbon monoxide sensors. Sens. Actuators B Chem. 125, 60–65 (2007)

    Google Scholar 

  42. H. Kato, O. Nishikawa, T. Matsui, S. Honma, H. Kokado, Fourier-transform infrared-spectroscopy study of conducting polymer polypyrrole higher order structure of electrochemically synthesized film. J. Phys. Chem. 95, 6014–6016 (1991)

    Google Scholar 

  43. F. Andreani, L. Angiolini, V. Grenci, E. Salatelli, Optically active polyalkylthiophenes: synthesis and polymerization of chiral, symmetrically substituted, quinquethiophene monomer. Synth. Methods 145, 221–227 (2004)

    Google Scholar 

  44. S. Goel, N.A. Mazumdar, A. Gupta, Synthesis and characterization of polypyrrole nanofibers with different dopants. Polym. Adv. Technol. 21, 205–210 (2010)

    Google Scholar 

  45. S. Gurunathan, J.W. Han, E.S. Kim, J.H. Park, J.H. Kim, Reduction of graphene oxide by resveratrol: a novel and simple biological method for the synthesis of an effective anticancer nanotherapeutic molecule. Int. J. Nanomed. 10, 2951–2969 (2015)

    Google Scholar 

  46. C. Cunha, S. Panseri, D. Iannazzo, A. Piperno, A. Pistone, M. Fazio, A. Russo, M. Marcacci, S. Galvagno, Hybrid composites made of multiwalled carbon nanotubes functionalized with Fe3O4 nanoparticles for tissue engineering applications. Nanotechnology 23, 465102–465112 (2012)

    ADS  Google Scholar 

  47. C.D. Zappielo, D.M. Nanicuacua, W.N.L. dos Santos, D.L.F. da Silva, L.H. Dall'Antonia, F.M. de Oliveira, D.N. Clausen, C.R.T. Tarley, Solid phase extraction to on-line preconcentrate trace cadmium using chemically modified nano-carbon black with 3-mercaptopropyltrimethoxysilane. J. Braz. Chem. Soc. 27, 1715–1726 (2016)

    Google Scholar 

  48. B. Yeole, T. Sen, D.P. Hansora, S. Mishra, Effect of electrical properties on gas sensitivity of polypyrrole/cds nanocomposites. J. Appl. Polym. Sci. 132, 42379–42388 (2015)

    Google Scholar 

  49. X. Liu, D. Shou, C. Chen, H. Mao, Y. Kong, Y. Tao, Core-shell structured polypyrrole/mesoporous SiO2 nanocomposite capped with graphene quantum dots as gatekeeper for irradiation-controlled release of methotrexate. Mater. Sci. Eng. C Mater. Biol. Appl. 81, 206–212 (2017)

    Google Scholar 

  50. C. Su, L. Wang, L. Xu, C. Zhang, Synthesis of a novel ferrocene-contained polypyrrole derivative and its performance as a cathode material for Li-ion batteries. Electrochim. Acta 104, 302–307 (2013)

    ADS  Google Scholar 

  51. A. Hassanein, N. Salahuddin, A. Matsuda, G. Kawamura, M. Elfiky, Fabrication of biosensor based on chitosan-ZnO/polypyrrole nanocomposite modified carbon paste electrode for electroanalytical application. Mater. Sci. Eng. C Mater. Biol. Appl. 80, 494–501 (2017)

    Google Scholar 

  52. B. Tian, G. Zerbi, Lattice dynamics and vibrational spectra of polypyrrole. J. Chem. Phys. 92, 3886–3891 (1990)

    ADS  Google Scholar 

  53. S.T. Navale, A.T. Mane, M.A. Chougule, R.D. Sakhare, S.R. Nalage, V.B. Patil, Highly selective and sensitive room temperature NO2 gas sensor based on polypyrrole thin films. Synth. Methods 189, 94–99 (2014)

    Google Scholar 

  54. R. Atchudan, J. Joo, A. Pandurangan, An efficient synthesis of graphenated carbon nanotubes over the tailored mesoporous molecular sieves by chemical vapor deposition. Mater. Res. Bull. 48, 2205–2212 (2013)

    Google Scholar 

  55. J. Sun, X. Shu, Y. Tian, Z. Tong, S. Bai, R. Luo, D. Li, C.C. Liu, Facile preparation of polypyrrole-reduced graphene oxide hybrid for enhancing NH3 sensing at room temperature. Sens. Actuators B Chem. 241, 658–664 (2017)

    Google Scholar 

  56. T. Ungar, J. Gubicza, G. Ribarik, C. Pantea, T.W. Zerda, Microstructure of carbon blacks determined by X-ray diffraction profile analysis. Carbon 40, 929–937 (2002)

    Google Scholar 

  57. F. Kanwal, S.A. Siddiqi, A. Batool, M. Imran, W. Mushtaq, T. Jamil, Synthesis of polypyrrole–ferric oxide (Ppy–Fe2O3) composites and study of their structural and conducting properties. Synth. Methods 161, 335–339 (2011)

    Google Scholar 

  58. A.K. Thakur, R.B. Choudhary, M. Majumder, G. Gupta, In-situ integration of waste coconut shell derived activated carbon/polypyrrole/rare earth metal oxide (Eu2O3): a novel step towards ultrahigh volumetric capacitance. Electrochim. Acta 251, 532–545 (2017)

    Google Scholar 

  59. A. Morozan, P. Jegou, S. Campidelli, S. Palacin, B. Jousselme, Relationship between polypyrrole morphology and electrochemical activity towards oxygen reduction reaction. Chem. Commun. 48, 4627–4629 (2012)

    Google Scholar 

  60. P. Pfluger, G.B. Street, Chemical electronic and structural properties of conducting heterocyclic polymers—a view by XPS. J. Chem. Phys. 80, 544–553 (1984)

    ADS  Google Scholar 

  61. C.M. Woodbridge, D.L. Pugmire, R.C. Johnson, N.M. Boag, M.A. Langell, HREELS and XPS studies of ferrocene on Ag(100). J. Phys. Chem. B 104, 3085–3093 (2000)

    Google Scholar 

  62. Q. Dong, X. Zhuang, Z. Li, B. Li, B. Fang, C. Yang, H. Xie, F. Zhang, X. Feng, Efficient approach to iron/nitrogen co-doped graphene materials as efficient electrochemical catalysts for the oxygen reduction reaction. J. Mater. Chem. A 3, 7767–7772 (2015)

    Google Scholar 

  63. M. Mishra, A.P. Singh, V. Gupta, A. Chandra, S.K. Dhawan, Tunable EMI shielding effectiveness using new exotic carbon: polymer composites. J. Alloy. Compd. 688, 399–403 (2016)

    Google Scholar 

  64. C.M. Wong, D.B. Walker, A.H. Soeriyadi, J.J. Gooding, B.A. Messerle, A versatile method for the preparation of carbon–rhodium hybrid catalysts on graphene and carbon black. Chem. Sci. 7, 1996–2004 (2016)

    Google Scholar 

  65. A.C. de Souza, A.T.N. Pires, V. Soldi, Thermal stability of ferrocene derivatives and ferrocene-containing polyamides. J. Therm. Anal. Calorim. 70, 405–414 (2002)

    Google Scholar 

  66. M. Jana, S. Saha, P. Khanra, P. Samanta, H. Koo, N. Chandra Murmu, T. Kuila, Non-covalent functionalization of reduced graphene oxide using sulfanilic acid azocromotrop and its application as a supercapacitor electrode material. J. Mater. Chem. A 3, 7323–7331 (2015)

    Google Scholar 

  67. R. Bera, S. Suin, S. Maiti, N.K. Shrivastava, B.B. Khatua, Carbon nanohorn and graphene nanoplate based polystyrene nanocomposites for superior electromagnetic interference shielding applications. J. Appl. Polym. Sci. 132, 42803–42817 (2015)

    Google Scholar 

  68. M.H. Al-Saleh, U. Sundararaj, Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47, 1738–1746 (2009)

    Google Scholar 

  69. P. Saini, V. Choudhary, B.P. Singh, R.B. Mathur, S.K. Dhawan, Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding. Mater. Chem. Phys. 113, 919–926 (2009)

    Google Scholar 

  70. S.T. Hsiao, C.C.M. Ma, H.W. Tien, W.H. Liao, Y.S. Wang, S.M. Li, C.Y. Yang, S.C. Lin, R.B. Yang, Effect of covalent modification of graphene nanosheets on the electrical property and electromagnetic interference shielding performance of a water-borne polyurethane composite. ACS Appl. Mater. Interfaces. 7, 2817–2826 (2015)

    Google Scholar 

  71. X. Mei, L. Lu, Y. Xie, W. Wang, Y. Tang, K.S. Teh, An ultra-thin carbon-fabric/graphene/poly(vinylidene fluoride) film for enhanced electromagnetic interference shielding. Nanoscale 11, 13587–13599 (2019)

    Google Scholar 

  72. D. Xing, L. Lu, K.S. Teh, Z. Wan, Y. Xie, Y. Tang, Highly flexible and ultra-thin Ni-plated carbon-fabric/polycarbonate film for enhanced electromagnetic interference shielding. Carbon 132, 32–41 (2018)

    Google Scholar 

  73. B. Zhao, C.X. Zhao, R.S. Li, S.M. Hamidinejad, C.B. Park, Flexible, ultrathin, and high-efficiency electromagnetic shielding properties of poly(vinylidene fluoride)/carbon composite films. ACS Appl. Mater. Interfaces. 9, 20873–20884 (2017)

    Google Scholar 

  74. B. Zhao, G. Shao, B. Fan, W. Zhao, Y. Xie, R. Zhang, Facile preparation and enhanced microwave absorption properties of core-shell composite spheres composited of Ni cores and TiO2 shells. Phys. Chem. Chem. Phys. 17, 8802–8810 (2015)

    Google Scholar 

  75. J. Anupama, B. Anil, S. Rajvinder, P.S. Alegaonkar, K. Balasubramanian, D. Suwarna, Graphene nanoribbon–PVA composite as EMI shielding material in the X band. Nanotechnology 24, 455705–455713 (2013)

    Google Scholar 

Download references

Acknowledgements

Financial supports from the National Natural Science Foundation of China (51673170, 51873189 and 51811530097) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haojie Yu or Li Wang.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, the manuscript entitled, “Electromagnetic interference shielding properties of ferrocene-based polypyrrole/carbon material composites”.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazir, A., Yu, H., Wang, L. et al. Electromagnetic interference shielding properties of ferrocene-based polypyrrole/carbon material composites. Appl. Phys. A 126, 749 (2020). https://doi.org/10.1007/s00339-020-03927-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03927-2

Keywords

Navigation