Skip to main content
Log in

Regulation of failure mechanism of a bilayer Gr/h-BN staggered stacked heterostructure via interlayer sp3 bonds, interface connection, and defects

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The combination of vertical and in-plane heterostructures will create unprecedented structures that may produce novel physical properties. In this study, the failure mechanism of a bilayer Gr/h-BN staggered stacked heterostructure (BGBN-SS) with different interlayer sp3 bonds, different interface connection, and various defects has been investigated. The results show that interlayer sp3 bonds and various defect affect the failure mechanism of BGBN-SS in two contrary ways. The sp3 bonds raise the primary strain of the BGBN-SS-containing various defects and different interface connection, and can weaken tensile stresses and strain and Young’s modulus. However, the creation of interlayer bonding leads the bilayer heterostructure gradually changed to “quasi three-dimensional” structure. The stronger interlayer interaction induced by sp2sp3 bonds in “quasi three-dimensional” structure can strengthen the interlayer shell modulus and load transfer rate. In addition, the mechanical properties of interface C–N bonding are greater than that of interface C–B bonding, indicating that C–N bonding at interface could improve the stability and ductility of the composite effectively. The square nanoholes are more likely to accumulate the local stress of the system, compared with circular nanoholes. The changing of sp2 hybridization of interlayer bonds transforms to a weak hybrid sp3 bonds. As a result, the special defects (interlayer bonding) introduce a new stress transfer mode (different from vdW heterostructures and in-plane hybrid nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures. Nature 499(7459), 419–425 (2013)

    Google Scholar 

  2. Y. Liu, Y. Huang, X.F. Duan, Van der Waals integration before and beyond two-dimensional materials. Nature 567(7748), 323–333 (2019)

    ADS  Google Scholar 

  3. E.M. Alexeev, D.A. Ruiz-Tijerina, M. Danovich et al., Resonantly hybridized excitons in moire superlattices in van der Waals heterostructures. Nature 567(7746), 81 (2019)

    ADS  Google Scholar 

  4. K.S. Novoselov, A. Mishchenko, A. Carvalho et al., 2D materials and van der Waals heterostructures. Science 353(6298), aac9439 (2016)

    Google Scholar 

  5. J.E. Barrios-Vargas, B. Mortazavi, A.W. Cummings et al., Electrical and Thermal transport in coplanar polycrystalline graphene–hBN heterostructures. Nano Lett. 17(3), 1660–1664 (2017)

    ADS  Google Scholar 

  6. L. Britnell, R.V. Gorbachev, R. Jalil et al., Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335(6071), 947–950 (2012)

    ADS  Google Scholar 

  7. L. Liu, J. Park, D.A. Siegel et al., Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges. Science 343(6167), 163–167 (2014)

    ADS  Google Scholar 

  8. X.J. Liu, J.F. Gao, G. Zhang et al., Design of phosphorene/graphene heterojunctions for high and tunable interfacial thermal conductance. Nanoscale 10(42), 19854–19862 (2018)

    Google Scholar 

  9. L. Fan, W.J. Yao, Effect of defects on mechanical properties of planar h-BN-graphene heterostructure. Mater Res Express 6, 105613 (2019)

    ADS  Google Scholar 

  10. D. Wang, G. Chen, C. Li et al., Thermally induced graphene rotation on hexagonal boron nitride. Phys. Rev. Lett. 116, 126101 (2016)

    ADS  Google Scholar 

  11. G. Argentero, A. Mittelberger, M.R.A. Monazam et al., Unraveling the 3D atomic structure of a suspended graphene/hBN van der waals heterostructure. Nano Lett. 17, 1409–1416 (2017)

    ADS  Google Scholar 

  12. K. Kim, M. Yankowitz, B. Fallahazad et al., van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016)

    ADS  Google Scholar 

  13. J. Zhang, Y. Hong, Y. Yue et al., Thermal transport across graphene and single layer hexagonal boron nitride. J. Appl. Phys. 117, 134307 (2015)

    ADS  Google Scholar 

  14. M.Y. Li, B. Zheng, K. Duan et al., Effect of defects on the thermal transport across the graphene/hexagonal boron nitride interface. J. Phys. Chem. C 122, 14945–14953 (2018)

    Google Scholar 

  15. L.A. Chernozatonskii, G.K. Dmitry, P.B. Sorokin et al., Strong influence of graphane island configurations on the electronic properties of a mixed graphene/graphane superlattice. J. Phys. Chem. C 116(37), 20035–20039 (2012)

    Google Scholar 

  16. L.A. Chernozatonskii, D.G. Kvashnin, O.P. Kvashnina et al., Similarity in band gap behavior of modified graphene with different types of functionalization. J. Phys. Chem. C 118(2), 1312–1318 (2014)

    Google Scholar 

  17. L. Menyoung, R. John, P.G. Wallbank et al., Ballistic miniband conduction in a graphene superlattice. Science 353, 1526–1529 (2016)

    Google Scholar 

  18. S. Dai, Q. Ma, M.K. Liu et al., Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat. Nanotechnol. 10(8), 682–686 (2015)

    ADS  Google Scholar 

  19. D.G. Kvashnin, O.P. Kvashnina, P.V. Avramov et al., Novel hybrid C/BN two-dimensional heterostructures. Nanotechnology 28(8), 085205 (2017)

    ADS  Google Scholar 

  20. D.G. Kvashnin, S. Bellucci, L.A. Chernozatonskii et al., Sharp variations in the electronic properties of graphene deposited on the h-BN layer. Phys. Chem. Chem. Phys. 17(6), 4354–4359 (2015)

    Google Scholar 

  21. A.R. Muniz, D. Maroudas, Formation of fullerene superlattices by interlayer bonding in twisted bilayer graphene. J. Appl. Phys. 111(4), 043513 (2012)

    ADS  Google Scholar 

  22. L.A. Chernozatonskii, P.B. Sorokin, A.G. Kvashnin et al., Diamond-like C2H nanolayer, diamane: simulation of the structure and properties. JETP Lett. 90(2), 134–138 (2009)

    ADS  Google Scholar 

  23. A.G. Kvashnin, L.A. Chernozatonskii, B.I. Yakobson et al., Phase diagram of quasi-two-dimensional carbon, from graphene to diamond. Nano Lett. 14(2), 676–681 (2014)

    ADS  Google Scholar 

  24. L.A. Chernozatonskii, P.B. Sorokin, A.A. Kuzubov et al., Influence of size effect on the electronic and elastic properties of diamond films with nanometer thickness. J. Phys. Chem. C 115(1), 132–136 (2011)

    Google Scholar 

  25. A.R. Muniz, D. Maroudas, Opening and tuning of band gap by the formation of diamond superlattices in twisted bilayer graphene. Phys. Rev. B 86(7), 075404 (2012)

    ADS  Google Scholar 

  26. M.P. Levendorf, C. Kim, L. Brown et al., Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 488(7413), 627–632 (2012)

    ADS  Google Scholar 

  27. L. Fan, W. Yao, Effect of interlayer sp 3 bonds and nanopores on mechanical properties of vertically-stacked 2D heterostructures. Mater. Res. Express 6, 105618 (2019)

    ADS  Google Scholar 

  28. E.E. Kasra, S. Sadegh, J. Maisam, Mechanical properties of defective hybrid graphene-boron nitride nanosheets: a molecular dynamics study. Comput. Mater. Sci. 149, 170–181 (2018)

    Google Scholar 

  29. Y.Y. Zhang, C.M. Wang, Y. Chen et al., Mechanical properties of bilayer graphene sheets coupled by sp3 bonding. Carbon 49, 4511–4517 (2011)

    Google Scholar 

  30. W.J. Yao, L. Fan, Research on the correlation of mechanical properties of BN–graphene–BN/BN vertically-stacked nanostructures in the presence of interlayer sp3 bonds and nanopores with temperature. Phys. Chem. Chem. Phys. 22, 5920 (2020)

    Google Scholar 

  31. Y.F. Li, A.R. Wei, H. Ye et al., Mechanical and thermal properties of grain boundary in a planar heterostructure of graphene and hexagonal boron nitride. Nanoscale 10, 3497 (2018)

    Google Scholar 

  32. M.F. Isaac, F.C. Luiz, Pereira thermal conductivity of graphene-hBN superlattice ribbons. Sci. Rep. 8, 2737 (2018)

    Google Scholar 

  33. M. Neek-Amal, F.M. Peeters, Graphene on boron-nitride: moire pattern in the van der Waals energy. Appl. Phys. Lett. 104, 041909 (2014)

    ADS  Google Scholar 

  34. L. Fan, W.J. Yao, Mechanical properties of a G/h-BN heterobilayer nanosheets coupled by interlayer sp3 bonds and defects. Mater. Res. Express 6, 095075 (2019)

    ADS  Google Scholar 

  35. A. Kınaci, J.B. Haskins, C. Sevik et al., Thermal conductivity of BN-C nanostructures. Phys. Rev. B 86, 115410 (2012)

    ADS  Google Scholar 

  36. T. Iwata, K. Shintani, Reduction of the thermal conductivity of a graphene/hBN heterobilayer via interlayer sp3 bonds. Phys. Chem. Chem. Phys. 20, 5217 (2018)

    Google Scholar 

  37. J. Huheey, T. Cottrell, The strengths of chemical bonds (Butterworths, London, 1958)

    Google Scholar 

  38. A. Rajabpour, S.M.V. Allaei, Tuning thermal conductivity of bilayer graphene by interlayer sp3 bonding: a molecular dynamics study. Appl. Phys. Lett. 101, 053115 (2012)

    ADS  Google Scholar 

  39. Y.Y. Zhang, Y.T. Gu, Mechanical properties of graphene: effects of layer number, temperature and isotope. Comput. Mater. Sci. 71, 197–200 (2013)

    ADS  Google Scholar 

  40. H. Li, H. Zhang, X.L. Cheng, The effect of temperature, defect and strain rate on the mechanical property of multi-layer graphene: coarse-grained molecular dynamics study. Phys. E 85, 97–102 (2017)

    Google Scholar 

  41. X.K. Chen, K.Q. Chen, Thermal transport of carbon nanomaterials. J. Phys. Condens. Matter 32, 153002 (2020)

    ADS  Google Scholar 

  42. X.K. Chen, M. Pang, T. Chen et al., Thermal rectification in asymmetric graphene/hexagonal boron nitride van der Waals heterostructures. ACS Appl. Mater. Interfaces 12, 15517–15526 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported by a National Natural Science Foundation of China (11572186).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Fan or Wenjuan Yao.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, L., Yao, W. & Zhang, Z. Regulation of failure mechanism of a bilayer Gr/h-BN staggered stacked heterostructure via interlayer sp3 bonds, interface connection, and defects. Appl. Phys. A 126, 752 (2020). https://doi.org/10.1007/s00339-020-03895-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03895-7

Keywords

Navigation