Skip to main content

Advertisement

Log in

Analysis of 4H-SiC MOSFET with distinct high-k/4H-SiC interfaces under high temperature and carrier-trapping conditions

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, the reliability of different oxide/4H-SiC interfaces under high temperature and carrier-trapping conditions are investigated carefully. In more detail, the carrier-trapping and temperature effects are considered in the electrical characterization of a low breakdown 4H-SiC-based MOSFET by using in turn SiO2, Si3N4, AlN, Al2O3, Y2O3 and HfO2 as gate dielectric. A gate oxide with a high relative permittivity notably improves the transistor performance. In addition, HfO2 assures the MOSFET best immunity behaviors. The obtained results are explained in terms of the carrier channel mobility, device on-state resistance, and oxide electric field. By using HfO2, however, an increased gate leakage current is calculated. This drawback is overcome by inserting a thin interfacial layer (2 nm-thick) in the HfO2/4H-SiC MOS structure. In particular, two alternative gate stacked dielectrics, involving either SiO2 or Al2O3, have proven their effectiveness in preserving the transistor on-state figures of merit while limiting the gate leakage current in the whole explored gate voltage range. To support the prediction capabilities of the presented modeling analysis, the simulations results are compared with experimental data from literature resulting in a good agreement. Low power MOSFETs are used in several applications for which reliability and durability are as critical as performance. For example, referring to power optimizers for photovoltaic (PV) modules, which fall under the low-load and low-voltage category of DC–DC converters, these devices significantly increase the energy generated by each single PV module operating under harsh conditions and stressing environments. In addition, they have to ensure high reliability over the long term of operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. Bassi, S.L. Tripathi, S. Verma, in Proceedings of the IEEE 10th Annual Information Technology, electronics and Mobile Communication Conference—IEMCON (2019)

  2. H. Bencherif, A. Yousfi, L. Dehimi, F. Pezzimenti, F.G. Della Corte, in Proceedings of IEEE International Conference on Sustainable Renewable Energy Systems and Applications—ICSRESA (2019).

  3. S. Wirths, Y.C. Arango, A. Prasmusinto, G. Alfieri, E. Bianda, A. Mihaila, L. Kranz, M. Bellini, L. Knoll, in Proceedings of IEEE 31st International Symposium on Power Semiconductor Devices and ICs—ISPSD (2019)

  4. K. Tachiki, T. Ono, T. Kobayashi, H. Tanaka, IEEE Trans. Electron. Dev. 65, 3077–3080 (2018)

    ADS  Google Scholar 

  5. C.T. Yen, C.C. Hung, H.T. Hung, L.S. Lee, C.Y. Lee, T.M. Yang, P.J. Chuang, in 27th International Symposium on Power Semiconductor Devices & IC's (ISPSD) (2015).

  6. H. Bencherif, L. Dehimi, G. Messina, P. Vincent, F. Pezzimenti, F.G. Della Corte, Sens Actuators A Phys. 307, 112007 (2020)

    Google Scholar 

  7. B.J. Baliga, Silicon Carbide Power Devices (World Scientific, Singapore, 2005)

    Google Scholar 

  8. K.Y. Gao, T. Seyller, L. Ley, F. Ciobanu, G. Pensl, A. Tadich, J.D. Riley, R.G.C. Leckey, Appl. Phys. Lett. 83, 1830 (2003)

    ADS  Google Scholar 

  9. A. Perez-Tomas, P. Godignon, J. Montserrat, J. Millan, N. Mestres, P. Vennegues, J. Stoemenos, J. Electrochem. Soc. 152, 259 (2005)

    Google Scholar 

  10. A. Fissel, M. Czernohorsky, H.J. Osten, J. Vac. Sci. Technol. B 24, 2115 (2006)

    Google Scholar 

  11. M. Wolborski, D. Rosen, A. Hallen, M. Bakowski, Thin Solid Films 515, 456 (2006)

    ADS  Google Scholar 

  12. R. Mahapatra, A.K. Chakraborty, N. Poolamai, A. Horsfall, S. Cattopadhyay, N.G. Wright, K.S. Coleman, P.G. Coleman, C.P. Burrows, J. Vac. Sci. Technol. B 25, 217 (2007)

    Google Scholar 

  13. V.V. Afanas’ev, A. Stesmans, F. Chen, S.A. Campbell, R. Smith, Appl. Phys. Lett. 82, 922 (2003)

    ADS  Google Scholar 

  14. F.G. Della Corte, G. De Martino, F. Pezzimenti, G. Adinolfi, G. Graditi, IEEE Trans. Electron. Dev. 65, 3352–3360 (2018)

    ADS  Google Scholar 

  15. H. Bencherif, L. Dehimi, F. Pezzimenti, G. De Martino, F.G. Della Corte, J. Electron. Mater. 48, 3871–3880 (2019)

    ADS  Google Scholar 

  16. G. De Martino, F. Pezzimenti, F. G. Della Corte, in Proceedings of International Semiconductor Conference—CAS (2018), pp. 147–150

  17. G. De Martino, F. Pezzimenti, F. G. Della Corte, G. Adinolfi, G. Graditi, in Proceedings of IEEE International Conference on Ph.D. Research in Microelectronics and Electronics—PRIME (2017), pp. 221–224

  18. H. Bencherif, L. Dehimi, F. Pezzimenti, A. Yousfi, G. De Martino, F. G. Della Corte, in Proceedings of IEEE International Conference on Advanced Electrical Engineering—ICAEE (2019)

  19. W.M. Cranton, N. Kalfagiannis, X. Hou, R. Ranson, D.C. Koutsogeorgis, Opt. Lasers Eng. 80, 45–51 (2016)

    Google Scholar 

  20. J. Robertson, J. Non Cryst. Solids 303, 94–100 (2002)

    ADS  Google Scholar 

  21. M. Nawaz, Act. Passive Electron. Compon. 2015, 1–12 (2015)

    Google Scholar 

  22. F. Gervais, Handbook of Optical Constants of Solids (Academic Press, Boston, 1998), pp. 761–775

    Google Scholar 

  23. J.H. Kang, Y.C. Jung, S. Seong, T. Lee, J. Ahn, W. Noh, I.S. Park, Mater. Sci. Semicond. Process. 63, 279–284 (2017)

    Google Scholar 

  24. A.K. Mahapatra, A. Chakraborty, N. Horsfall, G. Wright, K.S. Beamson, Appl. Phys. Lett. 92(4), 042904 (2008)

    ADS  Google Scholar 

  25. Silvaco Atlas User’s Manual, Device Simulator Software (2013)

  26. F. Pezzimenti, IEEE Trans. Electron. Devices 60, 1404–1411 (2013)

    ADS  Google Scholar 

  27. F. Bouzid, F. Pezzimenti, L. Dehimi, M.L. Megherbi, F.G. Della Corte, Jpn. J. Appl. Phys. 56, 094301 (2017)

    ADS  Google Scholar 

  28. F. Pezzimenti, H. Bencherif, A. Yousfi, L. Dehimi, Solid State Electron. 161, 107642 (2019)

    ADS  Google Scholar 

  29. F. Bouzid, L. Dehimi, F. Pezzimenti, M. Hadjab, A.H. Larbi, Superlattice Microsyst. 122, 57–73 (2018)

    ADS  Google Scholar 

  30. K. Ohtsuka, S. Hino, A. Nagae, R. Tanaka, Y. Kagawa, N. Miura, S. Nakata, Mater. Sci. Forum 778, 993–996 (2014)

    Google Scholar 

  31. E.I. Dimitriadis, N. Archontas, D. Girginoudi, N. Georgoulas, Microelectron. Eng. 133, 120–128 (2015)

    Google Scholar 

  32. S. Dhar, S. Haney, L. Cheng, S.R. Ryu, A.K. Agarwal, J. Appl. Phys. 108, 054509 (2010)

    ADS  Google Scholar 

  33. H. Bencherif, L. Dehimi, F. Pezzimenti, F.G. Della Corte, Appl. Phys. A Mater. 125, 294 (2019)

    ADS  Google Scholar 

  34. M.L. Megherbi, F. Pezzimenti, L. Dehimi, M.A. Saadoune, F.G. Della Corte, IEEE Trans. Electron. Devices 65, 3371–3378 (2018)

    ADS  Google Scholar 

  35. S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer, New York, 1984)

  36. M. Ruff, H. Mitlehner, R. Helbig, IEEE Trans. Electron. Devices 41, 61040–61054 (1994)

    ADS  Google Scholar 

  37. U. Lindefelt, J. Appl. Phys. 84, 2628–2637 (1998)

    ADS  Google Scholar 

  38. D.M. Caughey, R.E. Thomas, Proc. IEEE 55(12), 2192–2193 (1967)

    Google Scholar 

  39. X. Li, Y. Luo, L. Fursin, J.H. Zhao, M. Pan, P. Alexandrov, M. Weiner, Solid State Electron. 47, 233–239 (2003)

    ADS  Google Scholar 

  40. F.N. Trofimenkoff, Field-dependent mobility analysis of the field-effect transistor. Proc. IEEE 53(11), 1765–1766 (1965)

    Google Scholar 

  41. K. Zeghdar, L. Dehimi, F. Pezzimenti, S. Rao, F. Della Corte, Jpn. J. Appl. Phys. 58, 014002 (2019)

    ADS  Google Scholar 

  42. M.L. Megherbi, F. Pezzimenti, L. Dehimi, A. Saadoune, F.G. Della Corte, J. Electron. Mater. 47, 1414–1420 (2018)

    ADS  Google Scholar 

  43. K. Zeghdar, L. Dehimi, F. Pezzimenti, M.L. Megherbi, F.G. Della Corte, J. Electron. Mater. 49, 1322–1329 (2020)

    ADS  Google Scholar 

  44. CREE Model C3M0280090D (900V). [Online]. https://www.wolfspeed.com/c3m0280090d. Accessed June 2018

  45. V.P.K. Reddy, S. Kotamraju, Mater. Sci. Semicond. Process. 80, 24–30 (2018)

    Google Scholar 

  46. S.L. Rumyantsev, M.S. Shur, M.E. Levinshtein, P.A. Ivanov, J.W. Palmour, A.K. Agarwal, S.H. Ryu, Semicond. Sci. Technol. 24(7), 075011 (2009)

    ADS  Google Scholar 

  47. J. An, S. Hu, IEEE J. Emerg. Sel. Top. Power Electron. 8(1), 206–214 (2019)

    Google Scholar 

  48. K. Han, B.J. Baliga, IEEE Trans. Electron. Devices 65(8), 3333–3338 (2018)

    ADS  Google Scholar 

  49. W. Daves, A. Krauss, V. Häublein, A.J. Bauer, L. Frey, Additional Papers and Presentations, 2011(HITEN), 000108-000114. (2011).

  50. H.O. Olafsson, G. Gudjonsson, F. Allerstam, E.O. Sveinbjornsson, T. Rodle, R. Jos, Electron. Lett. 41(14), 825–826 (2005)

    ADS  Google Scholar 

  51. M. Le-Huu, M. Grieb, F.F. Schrey, H. Schmitt, V. Häublein, A. Bauer, L. Frey, in Materials Science Forum, 679734-737 (Trans Tech Publications Ltd, 2011)

  52. B.J. Baliga, Fundamentals of power semiconductor devices (Springer, New York, 2008)

    Google Scholar 

  53. S. Potbhare, N. Goldsman, G. Pennington, A. Lelis, J.M. McGarrity, J. Appl. Phys. 100, 044515 (2006)

    ADS  Google Scholar 

  54. F. Devynck, A. Alkauskas, P. Broqvist, A. Pasquarello, Phys. Rev. 84, 235320 (2011)

    Google Scholar 

  55. S. Potbhare, N. Goldsman, G. Pennington, A. Lelis, J.M. McGarrity, J. Appl. Phys. 100, 044516 (2006)

    ADS  Google Scholar 

  56. A. Kerber, E. Cartier, L. Pantisano, R. Degraeve, T. Kauerauf, Y. Kim, A. Hou, G. Groeseneken, H.E. Maes, U. Schwalke, I.E.E.E. Electr, Device L. 24, 87–89 (2003)

    Google Scholar 

  57. S. Zafar, A. Callegari, E. Gusev, M.V. Fischetti, J. Appl. Phys. 93, 9298 (2005)

    ADS  Google Scholar 

  58. Infineon Model BSZ150N10LS3 (100V). [Online]. https://www.infineon.com/cms/en/product/power/mosfet/20v-300v-n-channelpower-mosfet/80v-100v-n-channel-power-mosfet/bsz150n10ls3-g. Accessed 5 Mar 2020

  59. T. Shibata , Y. Noda, S. Yamauchi, S. Nogami, T. Yamaoka, Y. Hattori, H. Yamaguchi, in Proceedings of 19th International Symposium Power Semiconductor Device ICs (2007), pp. 37–40

  60. Y. Weber, F. Morancho, J.-M. Reynes, E. Stefanov, in Proceedings of 20th International Symposium Power Semiconductor Device ICs, May (2008), pp. 149–152

  61. S. Yamauchi, T. Shibata, S. Nogami, T. Yamaoka, Y. Hattori, H. Yamaguchi, in Proceedings of 18th International Symposium Power Semiconductor Device ICs, June, 1–4 (2006). Accessed 5 Mar 2020

  62. Infineon Model IPB072N15N3 G (150V). [Online]. https://www.infineon.com/cms/en/product/power/mosfet/20v-300v-n-channelpower-mosfet/120v-300v-n-channel-power-mosfet/ipb072n15n3-g

Download references

Acknowledgements

This work was supported by DGRSDT of Ministry of Higher education of Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Bencherif.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bencherif, H., Pezzimenti, F., Dehimi, L. et al. Analysis of 4H-SiC MOSFET with distinct high-k/4H-SiC interfaces under high temperature and carrier-trapping conditions. Appl. Phys. A 126, 854 (2020). https://doi.org/10.1007/s00339-020-03850-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03850-6

Keywords

Navigation