Skip to main content

Advertisement

Log in

Influence of cooling rate on the magnetic properties of Hf–Co–Fe–B melt-spun alloy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present work, Hf2Co9.5Fe1.5B melt-spun (MS) alloy is synthesized by employing melt spinning at different wheel speeds viz. 16, 20, 24 and 28 m/s to study the effect of quenching on the thermal, structural, microstructural and magnetic properties. The phase purity and the magnetic behaviour of the MS ribbons are highly dependent on the cooling rate that is controlled by altering the tangential wheel speed during melt spinning. Cooling rates are found to increase with increase in wheel speed with a concurrent decrease in the ribbon thickness owing to the increase in the heat transfer coefficient at the thermal contact. The best phase purity and the magnetic properties are found for the ribbons melt-spun at 28 m/s. This could be attributed to the high cooling rate 2.3 × 107 K/s causing crystallization of hard magnetic Hf2Co11B phase leading to refined grain size. A maximum coercivity (HC) ~ 2.18 kOe, remanence ratio (Mr/Ms) ~ 0.61, an appreciable magnetic energy product (BH)max ~ 3 MGOe observed in the MS ribbons at 28 m/s illustrates the critical role of wheel speed in the enhancement of permanent magnetic properties in a single-step without annealing. XRD patterns reveal that the alloy was found to crystallize in orthorhombic Hf2Co11B in addition to cubic Co and Hf6Co23 phases. FE-SEM analysis is carried out to realize the grain morphology and phase identification. The current work exhibits the efficacy of rapid quenching by melt spinning as an effective technique in the development of high-performance Hf2Co9.5Fe1.5B rare-earth-free permanent magnet alloy for future energy applications in the high-temperature regime.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Goll, R. Loeffler, J. Herbst, R. Karimi, G. Schneider, High-throughput search for new permanent magnet materials. J. Phys. Condens. Matter 26, 064208 (2014)

    Article  Google Scholar 

  2. M. Kuz’Min, K. Skokov, H. Jian, I. Radulov, O. Gutfleisch, Towards high-performance permanent magnets without rare earths. J. Phys. Condens. Matter 26, 064205 (2014)

    Article  Google Scholar 

  3. J. Coey, Hard magnetic materials: a perspective. IEEE Trans. Magn. 47, 4671–4681 (2011)

    Article  ADS  Google Scholar 

  4. F. Ronning, S. Bader, Rare earth replacement magnets. J. Phys. Condens. Matter 26, 060301 (2014)

    Article  Google Scholar 

  5. B. Balasubramanian, B. Das, R. Skomski, W.Y. Zhang, D.J. Sellmyer, Novel nanostructured rare-earth-free magnetic materials with high energy products. Adv. Mater. 25, 6090–6093 (2013)

    Article  Google Scholar 

  6. N.R. Christopher, N. Singh, S.K. Singh, B. Gahtori, S. Mishra, A. Dhar, V. Awana, Appreciable magnetic moment and energy density in single-step normal route synthesized MnBi. J. Supercond. Novel Magn. 26, 3161–3165 (2013)

    Article  Google Scholar 

  7. T. Gao, Y. Wu, S. Fackler, I. Kierzewski, Y. Zhang, A. Mehta, M. Kramer, I. Takeuchi, Combinatorial exploration of rare-earth-free permanent magnets: magnetic and microstructural properties of Fe–Co–W thin films. Appl. Phys. Lett. 102, 022419 (2013)

    Article  ADS  Google Scholar 

  8. W. Zhang, X. Li, S. Valloppilly, R. Skomski, J.E. Shield, D.J. Sellmyer, Magnetism of rapidly quenched rhombohedral Zr2Co11-based nanocomposites. J. Phys. D Appl. Phys. 46, 135004 (2013)

    Article  ADS  Google Scholar 

  9. B. Balasubramanian, P. Mukherjee, R. Skomski, P. Manchanda, B. Das, D.J. Sellmyer, Magnetic nanostructuring and overcoming Brown's paradox to realize extraordinary high-temperature energy products. Sci. Rep. 4, 6265 (2014)

    Article  ADS  Google Scholar 

  10. M.C. Nguyen, L. Ke, X. Zhao, V. Antropov, C.-Z. Wang, K.-M. Ho, Atomic structure and magnetic properties of HfCo7 alloy. IEEE Trans. Magn. 49, 3281–3283 (2013)

    Article  ADS  Google Scholar 

  11. M.A. McGuire, O. Rios, N.J. Ghimire, M. Koehler, Hard ferromagnetism in melt-spun Hf2Co11B alloys. Appl. Phys. Lett. 101, 202401 (2012)

    Article  ADS  Google Scholar 

  12. H. Chang, M. Liao, C. Shih, W. Chang, C. Yang, C. Hsiao, H. Ouyang, Hard magnetic property enhancement of Co7Hf-based ribbons by boron doping. Appl. Phys. Lett. 105, 192404 (2014)

    Article  ADS  Google Scholar 

  13. A. Musiał, Z. Śniadecki, B. Idzikowski, Development of magnetic properties during annealing of Hf2Co11B amorphous alloy. Acta Phys. Pol., A 131, 786–788 (2017)

    Article  Google Scholar 

  14. X.-Z. Li, Y.-L. Jin, M.-Y. Wang, J. Shield, R. Skomski, D.J. Sellmyer, Electron diffraction study of cobalt-rich Hf–Co. Intermetallics 75, 54–61 (2016)

    Article  Google Scholar 

  15. I. Singh, M. Palit, H. Basumatary, R. Mathur, M. Joseph, Microstructural evolution and magnetic properties of Co-rich Hf–Co alloys. J. Alloy. Compd. 763, 742–748 (2018)

    Article  Google Scholar 

  16. B. Balamurugan, B. Das, W. Zhang, R. Skomski, D.J. Sellmyer, Hf–Co and Zr–Co alloys for rare-earth-free permanent magnets. J. Phys. Condens. Matter 26, 064204 (2014)

    Article  Google Scholar 

  17. A. Musiał, Z. Śniadecki, J. Marcin, J. Kováč, I. Škorvánek, B. Idzikowski, Magnetism of coexisting rhombohedral and orthorhombic Hf2Co11 phases in rapidly quenched Hf2Co11B. J. Alloy. Compd. 665, 93–99 (2016)

    Article  Google Scholar 

  18. M.A. McGuire, O. Rios, Evolution of magnetic properties and microstructure of Hf2Co11B alloys. J. Appl. Phys. 117, 053912 (2015)

    Article  ADS  Google Scholar 

  19. B. Demczyk, S. Cheng, Structures of Zr2Co11 and HfCo7 intermetallic compounds. J. Appl. Crystallogr. 24, 1023–1026 (1991)

    Article  Google Scholar 

  20. I.A. Al-Omari, W. Zhang, L. Yue, R. Skomski, J.E. Shield, X. Li, D.J. Sellmyer, Hf doping effect on hard magnetism of nanocrystalline Zr18–xHfxCo82 Ribbons. IEEE Trans. Magn. 49, 3394–3397 (2013)

    Article  ADS  Google Scholar 

  21. B. Das, B. Balamurugan, P. Kumar, R. Skomski, V. Shah, J.E. Shield, A. Kashyap, D.J. Sellmyer, HfCo7-based rare-earth-free permanent-magnet alloys. IEEE Trans. Magn. 49, 3330–3333 (2013)

    Article  ADS  Google Scholar 

  22. X. Lu, K. Cheng, S. Liu, K. Li, F. Zheng, Y. Du, Experimental investigation of phase equilibria in the Co–Hf system. J. Alloy. Compd. 627, 251–260 (2015)

    Article  Google Scholar 

  23. N. Christopher, K. Anand, A. Srivastava, A. Gupta, N. Singh, Microstructure versus magnetic properties correlations in melt-spun Hf–Zr–Co–Fe–B alloys: role of thermal treatment. Mater. Res. Express 5, 066104 (2018)

    Article  ADS  Google Scholar 

  24. A. Musiał, Z. Śniadecki, B. Idzikowski, Thermal stability and glass forming ability of amorphous Hf2Co11B alloy. Mater. Des. 114, 404–409 (2017)

    Article  Google Scholar 

  25. Z. Śniadecki, A. Musiał, A.R. Kilmametov, Glass forming ability of (Hf, Cr) CoB alloys: computational and experimental studies. Mater. Charact. 132, 46–52 (2017)

    Article  Google Scholar 

  26. M.A. McGuire, R. Orlando, N.J. Ghimire, Hf–Co–B alloys as permanent magnet materials. Google Patents (2017).

  27. J. Belošević-Čavor, F. Congiu, V. Koteski, B. Cekić, G. Concas, Magnetism of the compounds in the Hf–Co phase system. Mater. Sci. Forum 518, 319–324 (2006)

    Article  Google Scholar 

  28. D. Sellmyer, B. Balamurugan, W. Zhang, B. Das, R. Skomski, P. Kharel, Y. Liu, Advances in rare-earth-free permanent magnets. Proceedings of the 8th Pacific Rim international congress on advanced materials and processing, Springer, 2013, pp. 1689–1696.

  29. G.D. Yüzüak, E. Yüzüak, Y. Elerman, Hf2Co11 thin films: rare-earth-free permanent nanomagnets. Thin Solid Films 625, 115–121 (2017)

    Article  ADS  Google Scholar 

  30. J.A. Lewis, Structural & magnetic characterization study of hfco7 alloy with substitutions of Si, Ti, Fe, Mn & B. Mechanical (and Materials) Engineering -- Dissertations, Theses, and Student Research 64, (2013). https://digitalcommons.unl.edu/mechengdiss/64

  31. N. Kataoka, K. Suzuki, A. Inoue, T. Masumoto, Magnetic properties of iron-base bcc alloys produced by mechanical alloying. J. Mater. Sci. 26, 4621–4625 (1991)

    Article  ADS  Google Scholar 

  32. A. Musiał, Z. Śniadecki, N. Pierunek, Y. Ivanisenko, D. Wang, M. Fawey, B. Idzikowski, Tuning of the magnetic properties of Hf2Co11B alloys through a combined high pressure torsion and annealing treatment. J. Alloy. Compd. 787, 794–800 (2019)

    Article  Google Scholar 

  33. A. Musiał, J. Kováč, Z. Śniadecki, Magnetic properties of Hf2 (FexCo1x) 11B (x = 02, 04) alloys synthesized from structurally metastable phases. J. Magn. Magn. Mater. 514, 167008 (2020)

    Article  Google Scholar 

  34. A.M. Gabay, G.C. Hadjipanayis, J. Cui, New anisotropic MnBi permanent magnets by field-annealing of compacted melt-spun alloys modified with Mg and Sb. J. Magn. Magn. Mater. 495, 165860 (2020)

    Article  Google Scholar 

  35. S. Kim, H. Moon, H. Jung, S.-M. Kim, H.-S. Lee, H. Choi-Yim, W. Lee, Magnetic properties of large-scaled MnBi bulk magnets. J. Alloy. Compd. 708, 1245–1249 (2017)

    Article  Google Scholar 

  36. M. Szwaja, P. Gębara, J. Filipecki, K. Pawlik, A. Przybył, P. Pawlik, J.J. Wysłocki, K. Filipecka, Influence of Nb addition on vacancy defects and magnetic properties of the nanocrystalline Nd–Fe–B permanent magnets. J. Magn. Magn. Mater. 382, 307–311 (2015)

    Article  ADS  Google Scholar 

  37. A. Przybył, K. Pawlik, P. Pawlik, P. Gębara, J. Wysłocki, Phase composition and magnetic properties of (Pr, Dy)–Fe–Co–(Ni, Mn)–B–Zr–Ti alloys. J. Alloy. Compd. 536, S333–S336 (2012)

    Article  Google Scholar 

  38. V.I. Tkatch, S.N. Denisenko, O.N. Beloshov, Direct measurements of the cooling rates in the single roller rapid solidification technique. Acta Mater. 45, 2821–2826 (1997)

    Article  Google Scholar 

  39. R. Mehrabian, Rapid solidification. Int. Metals Rev. 27, 185–208 (1982)

    Article  Google Scholar 

  40. A. Musial, Z. Śniadecki, J. Marcin, J. Kovac, I. Škorvánek, B. Idzikowski, Magnetism of coexisting rhombohedral and orthorhombic Hf2Co11 phases in rapidly quenched Hf2Co11B. J. Alloys Compd. 665, 93–99 (2015)

    Article  Google Scholar 

  41. R. Budhani, T. Goel, K. Chopra, Melt-spinning technique for preparation of metallic glasses. Bull. Mater. Sci. 4, 549–561 (1982)

    Article  Google Scholar 

  42. W. Zhang, S. Valloppilly, X. Li, Y. Liu, S. Michalski, T. George, R. Skomski, D.J. Sellmyer, Magnetic hardening of Zr2Co11: (Ti, Si) nanomaterials. J. Alloy. Compd. 587, 578–581 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nidhi Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christopher, N., Anand, K. & Singh, N. Influence of cooling rate on the magnetic properties of Hf–Co–Fe–B melt-spun alloy. Appl. Phys. A 126, 621 (2020). https://doi.org/10.1007/s00339-020-03805-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03805-x

Keywords

Navigation