Skip to main content
Log in

Photocatalytic activity of MoS2 nanoparticles: an experimental and DFT analysis

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Transition metal dichalcogenide MoS2 nanoparticles have been synthesized by an inexpensive slow evaporation method. The X-ray diffractogram (XRD) showed that the grown particles are in crystalline nature with mixed phase. The calculated average particle size of the prepared nanoparticles is 56 nm. The Fourier transform infra-red (FTIR) and Raman studies confirm the particles are bulk MoS2 in nature. Scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDX) images confirm the porosity and the presence of Mo and S elements. Photocatalytic activity of the prepared nanoparticles is tested against methylene blue (MB), and malachite green (MG) dyes and the efficiencies are found to be 93.68% and 85.33%, respectively. The degradation rate constant of MoS2 nanoparticles against MB and MG dyes are 0.0199, 0.01389 min−1, respectively, under visible light for 75 min irradiation. A density functional theory calculation has been performed to validate the photocatalytic experimental results based on bandgap, band edge potentials, and effective mass. The DFT results are related to the experimental values, and the discussions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Velický, P.S. Toth, Appl. Mater. Today 8, 68 (2017)

    Article  Google Scholar 

  2. Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, J. Am. Chem. Soc. 133, 7296 (2011)

    Article  Google Scholar 

  3. J. Chen, N. Kuriyama, H. Yuan, H.T. Takeshita, T. Sakai, J. Am. Chem. Soc. 123, 11813 (2001)

    Article  Google Scholar 

  4. X. Yang, Q. Li, G. Hu, et al. Sci. China. Mater.  59, 182 (2016)

  5. J. Lee, H.Y. Chang, K.N. Parrish, H. Li, R.S. Ruoff, D. Akinwande, Device Res Conf. Conf. Dig. DRC 24068, 43 (2013)

    Google Scholar 

  6. N. Joshi, T. Hayasaka, Y. Liu, H. Liu, O.N. Oliveira Jr., L. Lin, Microchim Acta 185, 213 (2018)

    Article  Google Scholar 

  7. J. Ryou, Y.S. Kim, K.C. Santosh, K. Cho, Sci. Rep. 6, 1 (2016)

    Article  Google Scholar 

  8. X. Li, H. Zhu, J. Materiomics 1, 33 (2015)

    Article  ADS  Google Scholar 

  9. N. Huo, Y. Yang, Y.N. Wu, X.G. Zhang, S.T. Pantelides, G. Konstantatos, Nanoscale 10, 15071 (2018)

    Article  Google Scholar 

  10. M. Buscema, M. Barkelid, V. Zwiller, H.S.J. Van Der Zant, G.A. Steele, A. Castellanos-Gomez, Nano Lett. 13, 358 (2013)

    Article  ADS  Google Scholar 

  11. T.H.M. Lau, X.W. Lu, J. Kulhav, S. Wu, L. Lu, T.S. Wu, R. Kato, J.S. Foord, Y.L. Soo, K. Suenagad, S.C.E. Tsang, Chem. Sci. 9, 4769 (2018)

    Article  Google Scholar 

  12. Q. Zhang, Z. Xu, H. Li, L. Wu, G. Cao, K. Li, Integr. Ferroelectr. 128, 125 (2011)

    Article  Google Scholar 

  13. C.R. Serrao, A.M. Diamond, S.L. Hsu, L. You, S. Gadgil, J. Clarkson, C. Carraro, R. Maboudian, C. Hu, S. Salahuddin, Appl. Phys. Lett. 106, 1 (2015)

    Article  Google Scholar 

  14. S.K. Tuteja, T. Duffield, S. Neethirajan, Nanoscale 9, 10886 (2017)

    Article  Google Scholar 

  15. A. Ambrosi, X. Chia, Z. Sofer, M. Pumera, Electrochem. Commun. 54, 36 (2015)

    Article  Google Scholar 

  16. X. Wang, M. Hong, F. Zhang, Z. Zhuang, Y. Yu, A.C.S. Sustain, Chem. Eng. 4, 4055 (2016)

    Google Scholar 

  17. W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang, H. Zhang, Small 9, 140 (2013)

    Article  Google Scholar 

  18. D. Lu, H. Wang, X. Zhao, K.K. Kondamareddy, J. Ding, C. Li, P. Fang, ACS Sustain. Chem. Eng. 5, 1436 (2017)

    Article  Google Scholar 

  19. G.P. Awasthi, S.P. Adhikari, S. Ko, H.J. Kim, C.H. Park, C.S. Kim, J. Alloys Compd. 682, 208 (2016)

    Article  Google Scholar 

  20. Z. Li, X. Meng, Z. Zhang, J. Photochem. Photobiol. C Photochem. Rev. 35, 39 (2018)

    Article  Google Scholar 

  21. P. Liu, Y. Liu, W. Ye, J. Ma, D. Gao, Nanotechnology 27, 225403 (2016)

    Article  ADS  Google Scholar 

  22. J. Zhang, Y. Zhao, L. Chen, S. Yin, M. Cai, Appl. Surf. Sci. 469, 27 (2019)

    Article  ADS  Google Scholar 

  23. Z. Wang, Q. Li, H. Xu, C. Dahl-petersen, Q. Yang, D. Cheng, Nano Energy 49, 634 (2018)

    Article  Google Scholar 

  24. P. Zhang, Z. Wang, L. Liu, L. Hyldgaard, Y. Wang, J. Mi, M. Dong, Appl. Mater. Today 14, 151 (2019)

    Article  Google Scholar 

  25. H. Li, C. Tsai, A.L. Koh, L. Cai, A.W. Contryman, A.H. Fragapane, J. Zhao, H.S. Han, H.C. Manoharan, F. Abild-pedersen, J.K. Nørskov, Nat. Publ. Gr. 15, 364 (2016)

    Google Scholar 

  26. S. Smidstrup, D. Stradi, J. Wellendorff, P.A. Khomyakov, U.G. Vej-Hansen, M.-E. Lee, T. Ghosh, E. Jónsson, H. Jónsson, K. Stokbro, Phys. Rev. B. 96, 195209 (2017)

    Article  ADS  Google Scholar 

  27. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  28. B. Radha, R. Rathi, K.C. Lalithambika, A. Thayumanavan, K. Ravichandran, S. Sriram, J. Mater. Sci. Mater. Electron. 29, 13474 (2018)

  29. W. Feng, L. Chen, M. Qin, X. Zhou, Q. Zhang, Y. Miao, K. Qiu, Y. Zhang, C. He, Sci. Rep. 5, 1 (2015)

    Google Scholar 

  30. F.L. Pua, C.H. Chia, S. Zakari, T.K. Liew, M.A. Yarmo, N.M. Huang, Sains Malaysiana 39, 243 (2010)

    Google Scholar 

  31. F. Bonaccorso, P.H. Tan, A.C. Ferrari, ACS NanoNano 7, 1838 (2013)

    Article  Google Scholar 

  32. K. Ravichandran, R. Uma, S. Sriram, D. Balamurgan, Ceram. Int. 43, 10041(2017)

  33. Y. Xu, Y. Li, X. Chen, C. Zhang, R. Zhang, P. Lu, AIP Adv. 6, 075001(2016)

  34. S. Cheriyan, D. Balamurgan, S. Sriram, Superlattices Microstruct. 116, 238 (2018)

    Article  ADS  Google Scholar 

  35. R. Uma, K. Ravichandran, S. Sriram, B. Sakthivel, Mater. Chem. Phys. 201, 147 (2017)

  36. T. Le Bahers, M. Rérat, P. Sautet, J. Phys. Chem. C 118, 5997 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sriram.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lalithambika, K.C., Shanmugapriya, K. & Sriram, S. Photocatalytic activity of MoS2 nanoparticles: an experimental and DFT analysis. Appl. Phys. A 125, 817 (2019). https://doi.org/10.1007/s00339-019-3120-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3120-9

Navigation