Skip to main content
Log in

Crystal growth, optical, physico-chemical and third-order nonlinear optical studies of morpholinium oxalate: a new organic single crystal for optical limiting application

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A single crystal of morpholinium oxalate (MO) was grown by the technique of slow evaporation at ambient temperature utilizing water as a solvent. Single crystal XRD reveals the MO crystal belongs to the monoclinic system with a centrosymmetric space group of P21/n. Powder XRD study demonstrates the crystalline quality. HRXRD study illustrates the crystalline perfection of the crystal and it is the key necessity for device fabrication. The optical transmittance (55%), cut-off wavelength (λ = 330 nm) and band gap energy (Eg = 2.61 eV) were determined by optical studies. Laser-induced surface damage threshold (LDT) analysis appraises the aptness of grown crystal for device fabrications and also the surface roughness of the sample was determined. The thermal stability and decomposition of the crystal were studied by thermogravimetric (TG) analysis and it was found that the material was thermally stable up to 179 °C. The various thermodynamical parameters were determined from TG analysis. The dielectric constant ɛ and dielectric loss ɛ’’ divulges the electrical properties of MO crystal and the various electronic parameters were also calculated. The nonlinear optical (NLO) behavior and optical limiting property were analyzed from Z-scan technique. Microhardness measurement was executed to recognize the mechanical strength of the MO crystal and its hardness value is 1.65 kg/mm2.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Leela, R. Hema, H. Stoeckli-Evans, K. Ramamurthi, G. Bhagavannarayana, Spectrochim. Acta A 77, 927–932 (2010)

    Article  ADS  Google Scholar 

  2. A. Parkin, I.D.H. Oswald, S. Parsons, Acta Crystallogr. Sect. B: Struct. Sci. 60, 219–227 (2004)

    Article  Google Scholar 

  3. I. Majerz, E. Kwiatkowska, A. Koll, J. Mol. Struct. 831, 106–113 (2007)

    Article  ADS  Google Scholar 

  4. M.S. Grigoriev, K.E. German, A.Y. Maruk, Acta Crystallogr. Sect. E: Struct. 64, 0390–0403 (2008)

    Article  Google Scholar 

  5. M. Owczarek, R. Jakubas, G. Bator, A. Pawlukojc, J. Baran, J. Przeslawski, W. Medycki, Chem. Phys. 381, 11–20 (2011)

    Article  Google Scholar 

  6. R. Chitra Amitdas, R.R. Choudhury, M. Ramanadham, R. Chidambaram, J. Phys. Indian Acad. Sci. 63, 263 (2004)

    Google Scholar 

  7. S. Swaminathan, G.S. Murthy, Acta Crystallogr. Sect. B: Struct. Sci. 32, 3140–3142 (1976)

    Article  Google Scholar 

  8. A. Arunkumar, P. Ramasamy, J. Cryst. Growth 388, 124–131 (2014)

    Article  ADS  Google Scholar 

  9. P. Szklarz, M. Owczarek, G. Bator, T. Lis, K. Gatner, R. Jakubas, J. Mol. Struct. 929, 48–57 (2009)

    Article  ADS  Google Scholar 

  10. K. Padayachy, Z. Mgcima, M.A. Fernandes, H.M. Marques, A.S. De Sousa, Acta Crystallogr. Sect. E: Struct. 67, o2594–o2601 (2011)

    Article  Google Scholar 

  11. H. Ratajczak, J. Baran, J. Barycki, S. Debrus, M. May, A. Pietraszko, H.M. Ratajczak, A. Tramer, J. Venturini, J. Mol. Struct. 555, 149–158 (2000)

    Article  ADS  Google Scholar 

  12. R. Bhuvaneswari, M. Divya Bharathi, G. Anbalagan, G. Chakkaravarthi, K. Sakthi Murugesan, J. Mol. Struct. 1173, 188–195 (2018)

    Article  ADS  Google Scholar 

  13. M.A. Kaid, A. Ashour, Appl. Surf. Sci. 253, 3029 (2007)

    Article  ADS  Google Scholar 

  14. G. Shanmugam, K. Ravi Kumar, B. Sridhar, S. Brahadeeswaran, Mater. Res. Bull. 47, 2315–2323 (2012)

    Article  Google Scholar 

  15. D. Rajan Babu, H. Arul, R. Ezhil vizhi, J. Cryst. Growth 452, 220–225 (2016)

    Article  ADS  Google Scholar 

  16. G.C. Bhar, A.K. Chaudhary, P. Kumbhakar, Appl. Surf. Sci. 161, 155–162 (2000)

    Article  ADS  Google Scholar 

  17. Z. Sun, G. Zhang, X. Wang, Z. Gao, X. Cheng, S. Zhang, D. Xu, Cryst. Growth Des. 9, 3251–3259 (2009)

    Article  Google Scholar 

  18. N.L. Boling, M.D. Crisp, G. Dube, Appl. Opt. 12, 650–660 (1973)

    Article  ADS  Google Scholar 

  19. G.H. Sun, G.H. Zhang, Z.H. Sun, X.Q. Wang, D. Xu, Mater. Chem. Phys. 127, 265–270 (2011)

    Article  Google Scholar 

  20. R.M. Wood, Laser-induced damage of optical materials (Institute of Physics Publishing, Dirac House, 2003)

    Book  Google Scholar 

  21. G. Om Reddy, K.S. Ravikumar, Thermo Chim. Acta 198, 147–165 (1992)

    Article  Google Scholar 

  22. A.W. Coats, J.P. Redfern, Nature 201, 68–69 (1964)

    Article  ADS  Google Scholar 

  23. B.K. Singh, R.K. Sharma, B.S.G. Arg, J. Therm. Anal. Calorim. 84, 593–600 (2006)

    Article  Google Scholar 

  24. P. Krishnan, K. Gayathri, G. Bhagavannarayana, V. Jayaramakrishnan, S. Gunasekaran, G. Anbalagan, Spectrochim. Acta Mol. Bimol. Spectrosc. 112, 152–160 (2013)

    Article  ADS  Google Scholar 

  25. P. Singh, M. Shkir, M.M. Abdullah, N. Vijayan, G. Bhagavannarayana, M.A. Wahab, Spectrochim. Acta Part A 123, 376–384 (2014)

    Article  Google Scholar 

  26. R. Hanumantharao, S. Kalainathan, G. Bhagavannarayana, U. Madhusoodanan, Spectrochim. Acta, Part A 103, 388–399 (2013)

    Article  ADS  Google Scholar 

  27. S. Das, A.J. Bhattacharyya, J. Phys. Chem. B 115, 2148–2154 (2011)

    Article  Google Scholar 

  28. P.S. Latha Mageshwari, R. Priya, S. Krishnan, V. Joseph, S. Jerome Das, Optik 125, 2289–2294 (2014)

    Article  ADS  Google Scholar 

  29. N.M. Ravindra, R.P. Bhardwaj, K. Sunil Kumar, V.K. Srivastava, J. Infrared Phys. 21, 369–381 (1981)

    Article  ADS  Google Scholar 

  30. N.M. Ravindra, V.K. Srivastava, J. Infrared Phys. 20, 67–69 (1980)

    Article  ADS  Google Scholar 

  31. M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 26, 760–769 (1990)

    Article  ADS  Google Scholar 

  32. T.D. Krauss, F.W. Wise, Appl. Phys. Lett. 65, 1739–1741 (1994)

    Article  ADS  Google Scholar 

  33. T. Cassano, R. Tommasi, M. Ferrara, F. Babudri, G.M. Farinola, F. Naso, Chem. Phys. 272, 111–118 (2001)

    Article  Google Scholar 

  34. K.J. Arun, S. Jayalekshmi, Optoelectron. Adv. Mater. (RC) 2, 701–706 (2008)

    Google Scholar 

  35. N. Vijayan, R. Ramesh Babu, R. Gopalakrishnan, P. Ramasamy, W.T.A. Harrison, J. Cryst. Growth 262, 490–498 (2004)

    Article  ADS  Google Scholar 

  36. E.M. Onitsch, Mikroskopie 2, 131–151 (1947)

    Google Scholar 

Download references

Acknowledgements

The author (R. Bhuvaneswari) gratefully acknowledge the University Grants Commission, New Delhi for the financial support provided (UGC-RGNF ref. No.10470 dated 01.04.2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sakthi Murugesan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhuvaneswari, R., Vinitha, G. & Sakthi Murugesan, K. Crystal growth, optical, physico-chemical and third-order nonlinear optical studies of morpholinium oxalate: a new organic single crystal for optical limiting application. Appl. Phys. A 125, 385 (2019). https://doi.org/10.1007/s00339-019-2678-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2678-6

Navigation