Skip to main content

Advertisement

Log in

Characterizations of continuous carbon fiber-reinforced composites for electromagnetic interference shielding fabricated by 3D printing

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

With an increase in electromagnetic interference pollution, composites for electromagnetic interference shielding (EMIS) with good shielding performance and friendly processability are widely demanded. Herein, a methodology for preparing composites with controllable shielding effectiveness (SE) is proposed. Carbon fiber (CF)-reinforced polylactic acid composites were fabricated by a 3D printing process, and the SE of the composites was controlled by varying the process parameters. To systematically investigate the feasibility of the methodology, the shielding properties, processability, and mechanical properties of the composites were investigated. The results showed that the SE was controlled in the ranges of 25.1–69.9 dB, 51.1–75.6 dB, and 6.8–78.9 dB by tailoring the number of layers (2–12), hatch spacing (1.6–0.8 mm), and filling angle (90°–0°), respectively. The critical mechanism of the controllability is that the content, spatial distribution, and orientation of CFs can be facilely and digitally controlled during processing. A conformal shell with a SE of 38.5 dB was fabricated to demonstrate superior processability of a complex geometry. The maximum tensile and flexural strengths of the composites were 111.0 and 152.9 MPa, respectively, which were much larger than those of most engineering plastics. Using this methodology, an appropriate SE that is neither excessive nor deficient can be readily realized, which helps to maintain high resource utilization. Complex geometries for EMIS can be rapidly and cheaply obtained without molds, which is difficult for traditional processes. These advantages make the 3D-printed CF-reinforced composites competitive with other EMIS materials and traditional processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Wen, X.X. Wang, W.Q. Cao, H.L. Shi, M.M. Lu, G. Wang, H.B. Jin, W.Z. Wang, J. Yuan, M.S. Cao, Reduced graphene oxides: the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world. Nanoscale 6(11), 5754–5761 (2014)

    Article  ADS  Google Scholar 

  2. R. Wang, H. Yang, J.L. Wang, F.X. Li, The electromagnetic interference shielding of silicone rubber filled with nickel coated carbon fiber. Polym. Test. 38(18), 53–56 (2014)

    Google Scholar 

  3. Y.T. Zhao, B. Wu, Y. Zhang, Y. Hao, Transparent electromagnetic shielding enclosure with CVD graphene. Appl. Phys. Lett. 109(10), 103507 (2016)

    Article  ADS  Google Scholar 

  4. E. Enriquez, J.D. Frutos, J.F. Fernandez, M.A. Rubia, Conductive coatings with low carbon-black content by adding carbon Nanofibers. Compos. Sci. Technol. 93(3), 9–16 (2014)

    Article  Google Scholar 

  5. Z.P. Chen, C. Xu, C.Q. Ma, W.C. Ren, H.M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv Mater. 25(9), 1296–1300 (2013)

    Article  Google Scholar 

  6. J. Chen, J.M. Wu, H.Y. Ge, D. Zhao, C. Liu, X.F. Hong, Reduced graphene oxide deposited carbon fiber reinforced polymer composites for electromagnetic interference shielding. Compos. Part. A Appl. Sci. Manuf. 82, 141–150 (2016)

    Article  Google Scholar 

  7. M. Mishra, A.P. Singh, V. Gupta, A. Chandra, S.K. Dhawan, Tunable EMI shielding effectiveness using new exotic carbon: polymer composites. J. Alloy. Compd. 688, 399–403 (2016)

    Article  Google Scholar 

  8. Z. Wang, G. Wei, G.L. Zhao, Enhanced electromagnetic wave shielding effectiveness of Fe doped carbon nanotubes/epoxy composites. Appl. Phys. Lett. 103(18), 183109 (2013)

    Article  ADS  Google Scholar 

  9. M.S. Hong, W.K. Choi, K.H. An, S.J. Kang, S.J. Park, Y.S. Lee, B.J. Kim, Electromagnetic interference shielding behaviors of carbon fibers-reinforced polypropylene matrix composites: II. Effects of filler length control. J. Ind. Eng. Chem. 20(5), 3901 (2014)

    Article  Google Scholar 

  10. L.S. Lu, D. Xing, K.S. Teh, H.L. Liu, Y.X. Xie, X.K. Liu, Y. Tang, Structural effects in a composite nonwoven fabric on EMI shielding. Mater. Des. 120, 354–362 (2017)

    Article  Google Scholar 

  11. T. Hu, J. Wang, J.L. Wang, R.H. Chen, Electromagnetic interference shielding properties of carbonyl iron powder-carbon fiber felt/epoxy resin composites with different layer angle. Mater. Lett. 142, 242–245 (2015)

    Article  Google Scholar 

  12. D. Micheli, A. Vricella, R. Pastore, A. Delfini, A. Giusti, M. Albano, M. Marchetti, F. Moglie, V.M. Primiani, Ballistic and electromagnetic shielding behaviour of multifunctional Kevlar fiber reinforced epoxy composites modified by carbon. Carbon 104, 141–156 (2016)

    Article  Google Scholar 

  13. X. Wang, M. Jiang, Z.W. Zhou, J.H. Gou, and D. Hui, 3D printing of polymer matrix composites: a review and prospective. Compos. Part. B Eng. 110, 442–458 (2017)

    Article  Google Scholar 

  14. C.T. Huang, L.K. Shrestha, K. Ariga, S.H. Hsu, A graphene–polyurethane composite hydrogel as a potential bioink for 3D bioprinting and differentiation of neural stem cells. J. Mater. Chem. B. 5, 8854–8864 (2017)

    Article  Google Scholar 

  15. R. Chen, J. Kang, M. Kang, H. Lee, H. Lee, Silicon pillar structure assisted three dimensional carbon nanotube assembly: fabrications and rational surface modifications. Bull. Chem. Soc. Jpn 91, 979–990 (2018)

    Article  Google Scholar 

  16. T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, D. Hui, Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos. Part. B Eng. 143, 172–196 (2018)

    Article  Google Scholar 

  17. M. Sadia, B. Arafat, W. Ahmed, R.T. Forbes, M.A. Alhnan, Channelled tablets: an innovative approach to accelerating drug release from 3D printed tablets. J. Controll. Release 269, 355–363 (2018)

    Article  Google Scholar 

  18. K. Chizari, M. Arjmand, Z. Liu, U. Sundararaj, D. Therriault, Three-dimensional printing of highly conductive polymer nanocomposites for EMI shielding applications. Mater Today Commun. 11, 112–118 (2017)

    Article  Google Scholar 

  19. R. Kotsilkova, E. Ivanov, P. Todorov, N. Volynets, A. Paddubskaya, P. Kuzhir, V. Uglov, I. Biro, K. Kertesz, G.I. Mark, L.P. Biro, Mechanical and electromagnetic properties of 3D printed hot pressed nanocarbon/poly(lactic) acid thin films. J. Appl. Phys. 121(6), 064105 (2017)

    Article  ADS  Google Scholar 

  20. A. Paddubskaya, N. Valynets, P. Kuzhir, K. Batrakov, S. Maksimenko, R. Kotsilkova, H. Velichkova, I. Petrova, I. Biro, K. Kertesz, G.I. Mark, Z.E. Horvath, L.P. Biro, Electromagnetic and thermal properties of three-dimensional printed multilayered nano-carbon/poly(lactic) acid structures. J. Appl. Phys. 119(13), 135102 (2016)

    Article  ADS  Google Scholar 

  21. X.Y. Tian, T.F. Liu, C.C. Yang, D.C. Li, Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Compos. Part. A Appl. Sci. Manuf. 88, 198–205 (2016)

    Article  Google Scholar 

  22. X.Y. Tian, T.F. Liu, Q.R. Wang, A. Dilmurat, D.C. Li, G. Ziegmann, Recycling and remanufacturing of 3D printed continuous carbon fiber reinforced PLA composites. J. Clean. Prod. 142, 1609–1618 (2017)

    Article  Google Scholar 

  23. F.V.D. Klift, Y. Koga, A. Todoroki, M. Ueda, Y. Hirano, R. Matsuzaki, 3D printing of continuous carbon fibre reinforced thermo-plastic (CFRTP) tensile test specimens. Open J. Compos. Mater. 06(01), 18–27 (2016)

    Article  Google Scholar 

  24. W. Hao, Y. Liu, H. Zhou, H. Chen, D. Fang, Preparation and characterization of 3D printed continuous carbon fiber reinforced thermosetting composites. Polym Test. 65, 29–34 (2018)

    Article  Google Scholar 

  25. N. Li, Y. Li, S. Liu, Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing. J. Mater. Process. Technol. 238, 218–225 (2016)

    Article  ADS  Google Scholar 

  26. C. Yang, X. Tian, T. Liu, Y. Cao, D. Li, 3D printing for continuous fiber reinforced thermoplastic composites: mechanism and performance. Rapid Prototyp. J. 23(1), 209–215 (2017)

    Article  Google Scholar 

  27. B. Safadi, R. Andrews, E.A. Grulke, Multiwalled carbon nanotube polymer composites: synthesis and characterization of thin films. J. Appl. Polym. Sci. 84, 2660–2669 (2002)

    Article  Google Scholar 

  28. T.D. Fornes, J.W. Baur, Y. Sabba, E.L. Thomas, Morphology and properties of melt-spun polycarbonate fibers containing single- and multi-wall carbon nanotubes. Polymer 47, 1704–1714 (2006)

    Article  Google Scholar 

  29. T. Liu, I.Y. Phang, L. Shen, S.Y. Chow, Y.D. Zhang, Morphology and mechanical properties of MWCNT reinforced nylon-6 composites. Macromolecules 37, 7214–7222 (2004)

    Article  ADS  Google Scholar 

  30. M.L. Manchado, L. Valentini, J. Biagiotti, J.M. Kenny, Thermal and mechanical properties of singlewalled carbon nanotubes-polypropylene composites prepared by melt processing. Carbon 43, 1499–1505 (2005)

    Article  Google Scholar 

  31. L.J. Love, V. Kunc, O. Rios, C.E. Duty, A.M. Elliott, B.K. Post, R.J. Smith, C.A. Blue, The importance of carbon fiber to polymer additive manufacturing. J. Mater. Res. 29(17), 1893–1898 (2014)

    Article  ADS  Google Scholar 

  32. H.L. Tekinalp, V. Kunc, G.M. Velez-Garcia, C.E. Duty, L. J.Love, A.K. Naskar, C.A. Blue, S. Ozcan, Highly oriented carbon fiber–polymer composites via additive manufacturing. Compos. Sci. Technol. 105, 144–150 (2014)

    Article  Google Scholar 

  33. F. Ning, W. Cong, J. Qiu, J. Wei, S. Wang, Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos. Part B 80, 369–378 (2015)

    Article  Google Scholar 

  34. F.D. Ning, W.L. Cong, J.J. Qiu, J.H. Wei, S.R. Wang, Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos. Part. B Eng. 80, 369–378 (2015)

    Article  Google Scholar 

  35. S. Jiang, Q.F. Li., Y.H. Zhao, J.W. Wang., M.Q. Kang, Effect of surface silanization of carbon fiber on mechanical properties of carbon fiber reinforced polyurethane composites. Compos. Sci. Technol. 110, 87–94 (2015)

    Article  Google Scholar 

  36. A. Shah, A. Ding, Y.H. Wang, L. Zhang, D.X. Wang, J. Muhammad, H. Huang, Y.P. Duan, X.L. Dong, Z.D. Zhang, Enhanced microwave absorption by arrayed carbon fibers and gradient dispersion of Fe nanoparticles in epoxy resin composites. Carbon 96, 987–997 (2016)

    Article  Google Scholar 

  37. Z.H. Hou, X.Y. Tian, J.K. Zhang, D.C. Li, 3D printed continuous fibre reinforced composite corrugated structure. Compos Struct. 184, 1005–1010 (2018)

    Article  Google Scholar 

  38. J. Song, Q. Yuan, H. Zhang, B. Huang, F. Fu, Elevated conductivity and electromagnetic interference shielding effectiveness of PVDF/PETG/carbon fiber composites through incorporating carbon black. J Polym. Res. 12, 158 (2015)

    Article  Google Scholar 

  39. M. Bayat, H. Yang, F.K. Ko, D. Michelson, A. Mei, Electromagnetic interference shielding effectiveness of hybrid multifunctional Fe3O4/carbon nanofiber composite. Polymer 55, 936–943 (2014)

    Article  Google Scholar 

  40. Y. Jia, K.Z. Li, L.Z. Xue, J.J. Ren, S.Y. Zhang, H.J. Li, Mechanical and electromagnetic shielding performance of carbon fiber reinforced multilayered (PyC-SiC)n matrix composites. Carbon 111, 299–308 (2017)

    Article  Google Scholar 

  41. A. Ameli, P. Jung, C. Park, Electrical properties and electromagnetic interference shielding effectiveness of polypropylene/carbon fiber composite foams. Carbon 60, 379–391 (2013)

    Article  Google Scholar 

  42. J.M. Wu, J. Chen, Y.Y. Zhao, W.X. Liu, W.B. Zhang, Effect of electrophoretic condition on the electromagnetic interference shielding performance of reduced graphene oxide-carbon fiber/epoxy resin composites. Compos. Part. B Eng. 105, 167–175 (2016)

    Article  Google Scholar 

  43. Z. Chen, C. Xu, C. Ma, W. Ren, H.M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interface shielding. Adv. Mater. 25, 1296–1300 (2013)

    Article  Google Scholar 

  44. Y. Yang, M.C. Gupta, K.L. Dudley, R.W. Lawrence, Novel carbon nanotube polystyrene foam composites for electromagnetic interference shielding. Nano Lett. 5, 2131–2134 (2005)

    Article  ADS  Google Scholar 

  45. H.B. Zhang, Q. Yan, W.G. Zheng, Z. He, Z.Z. Yu, Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 3, 918–924 (2011)

    Article  Google Scholar 

  46. A. Kausar, I. Rafique, B. Muhammad, Review of applications of polymer/carbon nanotubes and epoxy/CNT composites. Polym. Plast. Technol. 55(11), 1167–1191 (2016)

    Article  Google Scholar 

  47. S. Acierno, R. Barretta, R. Luciano, F.M.D. Sciarra, P. Russo, Experimental evaluations and modeling of the tensile behavior of polypropylene/single-walled carbon nanotubes fibers. Compos. Struct. 174, 12–18 (2017)

    Article  Google Scholar 

  48. R. Barretta, F.M.D. Sciarra, A nonlocal model for carbon nanotubes under axial loads. Adv. Mater. Sci. Eng. 2013, 1–6 (2013)

    Article  Google Scholar 

  49. R. Barretta, M. Canadija, R. Luciano, F.M.D. Sciarra, Stress-driven modeling of nonlocal thermoelastic behavior of nanobeams. Int. J. Eng. Sci. 126, 53–67 (2018)

    Article  MathSciNet  Google Scholar 

  50. M. Canadija, R. Barretta, F.M.D. Sciarra, A gradient elasticity model of BernoullieEuler nanobeams in non-isothermal environments. Eur. J. Mech. A Solids 55, 243–255 (2016)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant nos. 51575430 and 61671466), the National Key Research and Development Program (Grant nos. 2017YFB1103401 and 2016YFB1100902), the Rapid Manufacturing Engineering Technology Research Center of Shaanxi Province (Grant no. 2017HBGC-06), and the Innovative Talent Promotion Program-Young Science and Technology Nova Program (Grant no. 2017KJXX-14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyong Tian.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, L., Tian, X., Shang, Z. et al. Characterizations of continuous carbon fiber-reinforced composites for electromagnetic interference shielding fabricated by 3D printing. Appl. Phys. A 125, 266 (2019). https://doi.org/10.1007/s00339-019-2566-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2566-0

Navigation