Skip to main content
Log in

Effect of titanium doping on conductivity, density of states and conduction mechanism in ZnO thin film

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

High quality, ~ 120 nm thin ZnO and Ti-doped ZnO (TZO) films were deposited on silicon substrates using magnetron co-sputtering technique. Surface roughness of the films was ~ 2 nm. Ti incorporation effect on the structure, morphology, conductivity, density of states (DOS) and conduction mechanism was investigated in detail. Ti ions were incorporated in the interstitial sites of hexagonal ZnO lattice. Average crystallite size increased from ~ 16.63 to ~ 19.08 nm upon Ti doping in ZnO film. Conduction mechanism changed from overlapping large polaron tunneling (OLPT) for undoped ZnO film to corelated barrier hopping (CBH) for TZO film. The experimental data were fitted theoretically using OLPT and CBH models to calculate frequency and temperature-dependent DOS. An enhancement of ac conductivity and DOS was observed with the doping of Ti in ZnO thin film. Complex modulus study of TZO film revealed transition from long-range mobility to short-range mobility with increase in frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.A. Bidier, M.R. Hashim, A.M. Al-Diabat, M. Bououdina, Effect of growth time on Ti-doped ZnO nanorods prepared by low-temperature chemical bath deposition. Phys. E Low Dimens. Syst. Nanostruct. 88, 169–173 (2017). https://doi.org/10.1016/J.PHYSE.2017.01.009

    ADS  Google Scholar 

  2. W. Zhao, Q. Zhou, X. Zhang, X. Wu, A study on Ti-doped ZnO transparent conducting thin films fabricated by pulsed laser deposition. Appl. Surf. Sci. 305, 481–486 (2014). https://doi.org/10.1016/J.APSUSC.2014.03.119

    ADS  Google Scholar 

  3. F.-H. Wang, J.-C. Chao, H.-W. Liu, T.-K. Kang, Physical properties of ZnO thin films codoped with titanium and hydrogen prepared by RF magnetron sputtering with different substrate temperatures. J. Nanomater 2015, 1–11 (2015). https://doi.org/10.1155/2015/936482

    Google Scholar 

  4. J.-L. Chung, J.-C. Chen, C.-J. Tseng, The influence of titanium on the properties of zinc oxide films deposited by radio frequency magnetron sputtering. Appl. Surf. Sci. 254, 2615–2620 (2008). https://doi.org/10.1016/J.APSUSC.2007.09.094

    ADS  Google Scholar 

  5. M. Wang, Y. Zhang, H. Yu, Q. Li, S.H. Hahn, E.J. Kim, Nanosheet-constructed transparent conducting ZnO:In thin films. J. Alloys Compd. 561, 211–213 (2013). https://doi.org/10.1016/J.JALLCOM.2013.01.181

    Google Scholar 

  6. P. Song, M. Watanabe, M. Kon, A. Mitsui, Y. Shigesato, Electrical and optical properties of gallium-doped zinc oxide films deposited by dc magnetron sputtering. Thin Solid Films 411, 82–86 (2002). https://doi.org/10.1016/S0040-6090(02)00192-X

    ADS  Google Scholar 

  7. G. Kim, J. Bang, Y. Kim, S.K. Rout, S.I. Woo, Structural, electrical and optical properties of boron doped ZnO thin films using LSMCD method at room temperature. Appl. Phys. A. 97, 821–828 (2009). https://doi.org/10.1007/s00339-009-5317-9

    ADS  Google Scholar 

  8. F.-H. Wang, H.-P. Chang, C.-C. Tseng, C.-C. Huang, Effects of H2 plasma treatment on properties of ZnO:Al thin films prepared by RF magnetron sputtering. Surf. Coat. Technol. 205, 5269–5277 (2011). https://doi.org/10.1016/J.SURFCOAT.2011.05.033

    Google Scholar 

  9. S.-S. Lin, J.-L. Huang, P. Šajgalik, The properties of Ti-doped ZnO films deposited by simultaneous RF and DC magnetron sputtering. Surf. Coat. Technol. 191, 286–292 (2005). https://doi.org/10.1016/J.SURFCOAT.2004.03.021

    Google Scholar 

  10. A. Slassi, N. Lakouari, Y. Ziat, Z. Zarhri, A. Fakhim Lamrani, E.K. Hlil, A. Benyoussef, Ab initio study on the electronic, optical and electrical properties of Ti-, Sn- and Zr-doped ZnO. Solid State Commun. 218, 45–48 (2015). https://doi.org/10.1016/j.ssc.2015.06.010

    ADS  Google Scholar 

  11. Y.-M. Lu, C.-M. Chang, S.-I. Tsai, T.-S. Wey, Improving the conductance of ZnO thin films by doping with Ti, Thin Solid Films. 447–448 (2004) 56–60. https://doi.org/10.1016/J.TSF.2003.09.022

    ADS  Google Scholar 

  12. Y.R. Park, K.J. Kim, Optical and electrical properties of Ti-doped ZnO films: observation of semiconductor–metal transition. Solid State Commun. 123, 147–150 (2002). https://doi.org/10.1016/S0038-1098(02)00217-X

    ADS  Google Scholar 

  13. H. Chen, W. Guo, J. Ding, S. Ma, Ti-incorporated ZnO films synthesized via magnetron sputtering and its optical properties. Superlattices Microstruct. 51, 544–551 (2012). https://doi.org/10.1016/J.SPMI.2012.02.003

    ADS  Google Scholar 

  14. Z.-Y. Ye, H.-L. Lu, Y. Geng, Y.-Z. Gu, Z.-Y. Xie, Y. Zhang, Q.-Q. Sun, S.-J. Ding, D.W. Zhang, Structural, electrical, and optical properties of Ti-doped ZnO films fabricated by atomic layer deposition. Nanoscale Res. Lett. 8, 108 (2013). https://doi.org/10.1186/1556-276X-8-108

    ADS  Google Scholar 

  15. M. Yilmaz, G. Turgut, Titanium doping effect on the characteristic properties of sol-gel deposited ZnO thin films. Kov. Mater. 53, 333–339 (2015)

    Google Scholar 

  16. S.-S. Lin, J.-L. Huang, D.-F. Lii, Effect of substrate temperature on the properties of Ti-doped ZnO films by simultaneous rf and dc magnetron sputtering. Mater. Chem. Phys. 90, 22–30 (2005). https://doi.org/10.1016/J.MATCHEMPHYS.2004.08.040

    Google Scholar 

  17. J.J. Lu, Y.M. Lu, S.I. Tasi, T.L. Hsiung, H.P. Wang, L.Y. Jang, Conductivity enhancement and semiconductor–metal transition in Ti-doped ZnO films. Opt. Mater. Amst 29, 1548–1552 (2007). https://doi.org/10.1016/J.OPTMAT.2006.08.002

    ADS  Google Scholar 

  18. P.S. Shewale, N.K. Lee, S.H. Lee, K.Y. Kang, Y.S. Yu, Ti doped ZnO thin film based UV photodetector: Fabrication and characterization. J. Alloys Compd. 624, 251–257 (2015). https://doi.org/10.1016/J.JALLCOM.2014.10.071

    Google Scholar 

  19. B.D. Cullity, Elements of X-ray Diffraction, 2nd ed., Addison-Wesley, New York 1978

    Google Scholar 

  20. R.D. Gould, A.K. Hassan, A. C. electrical properties of thermally evaporated thin films of copper phthalocyanine. Thin Solid Films 223, 334–340 (1993). https://doi.org/10.1016/0040-6090(93)90541-V

    ADS  Google Scholar 

  21. Y. Cherifi, A. Chaouchi, Y. Lorgoilloux, M. Rguiti, A. Kadri, C. Courtois, Electrical, dielectric and photocatalytic properties of Fe-doped ZnO nanomaterials synthesized by sol gel method. Process. Appl. Ceram. 10, 125–135 (2016). https://doi.org/10.2298/PAC1603125C

    Google Scholar 

  22. M.F. Afsar, A. Jamil, M.A. Rafiq, Ferroelectric, dielectric and electrical behavior of two-dimensional lead sulphide nanosheets. Adv. Nat. Sci. Nanosci. Nanotechnol. 8, 045010 (2017). https://doi.org/10.1088/2043-6254/aa8b3d

    ADS  Google Scholar 

  23. M. Ahmad, M.A. Rafiq, M.M. Hasan, Transport characteristics and colossal dielectric response of cadmium sulfide nanoparticles. J. Appl. Phys. 114, 133702 (2013). https://doi.org/10.1063/1.4823810

    ADS  Google Scholar 

  24. A. K. Jonscher, The “universal” dielectric response, Nature 267 (1977) 673–679

    ADS  Google Scholar 

  25. J. Nagaraju, S. B. Krupanidhi, Dc and ac transport properties of Mn-doped ZnO thin films grown by pulsed laser ablation. Mater. Sci. Eng. B. 133, 70–76 (2006). https://doi.org/10.1016/J.MSEB.2006.05.005

    Google Scholar 

  26. A. Tabib, N. Sdiri, H. Elhouichet, M. Férid, Investigations on electrical conductivity and dielectric properties of Na doped ZnO synthesized from sol gel method. J. Alloys Compd. 622, 687–694 (2015). https://doi.org/10.1016/j.jallcom.2014.10.092

    Google Scholar 

  27. M. Krimi, K. Karoui, A. Ben Rhaiem, Electrical and dielectric properties of the Li 1.5Na0.5WO4 compound. J. Alloys Compd. 698, 510–517 (2017). https://doi.org/10.1016/J.JALLCOM.2016.12.237

    Google Scholar 

  28. S. Fareed, A. Jamil, M.A. Rafiq, F. Sher, Zinc modified cadmium titanite nanoparticles: Electrical and room temperature methanol sensing properties. Ceram. Int. 44, 4751–4757 (2018). https://doi.org/10.1016/j.ceramint.2017.12.059

    Google Scholar 

  29. A. Jamil, S.S. Batool, F. Sher, M.A. Rafiq, Determination of density of states, conduction mechanisms and dielectric properties of nickel disulfide nanoparticles. AIP Adv. 6, 055120 (2016). https://doi.org/10.1063/1.4952966

    ADS  Google Scholar 

  30. M. Shunmugam, H. Gurusamy, P. Anand, Devarajan, Investigations on the structural, electrical properties and conduction mechanism of CuO nanoflakes. Int. J. Nano Dimens. 8, 216–223 (2017)

    Google Scholar 

  31. S. Karthickprabhu, G. Hirankumar, A. Maheswaran, R.S. Daries Bella, C. Sanjeeviraja, Structural and electrical studies on Zn2+ doped LiCoPO4. J. Electrostat. 72, 181–186 (2014). https://doi.org/10.1016/J.ELSTAT.2014.02.001

    Google Scholar 

  32. M. Ganaie, M. Zulfequar, Ac conductivity measurement of Cd5 Se95—x Znx chalcogenide semiconductor using correlated barrier hopping model. Acta Phys. Pol. A. 128, 59–63 (2015). https://doi.org/10.12693/APhysPolA.128.59

    Google Scholar 

  33. T.M. Meaz, S.M. Attia, A.M. Abo El, Ata, Effect of tetravalent titanium ions substitution on the dielectric properties of Co–Zn ferrites. J. Magn. Magn. Mater. 257, 296–305 (2003). https://doi.org/10.1016/S0304-8853(02)01212-X

    ADS  Google Scholar 

  34. A. Ghosh, Ac conduction in iron bismuthate glassy semiconductors. Phys. Rev. B 42, 1388–1393 (1990). https://doi.org/10.1103/PhysRevB.42.1388

    ADS  Google Scholar 

  35. I.G. Austin, N.F. Mott, Polarons in crystalline and non-crystalline materials. Adv. Phys. 18, 41–102 (1969). https://doi.org/10.1080/00018736900101267

    ADS  Google Scholar 

  36. A. Jamil, M.F. Afsar, F. Sher, M.A. Rafiq, Temperature and composition dependent density of states extracted using overlapping large polaron tunnelling model in MnxCo1 – xFe2O4 (x = 0.25, 0.5, 0.75) nanoparticles. Phys. B Condens. Matter. 509, 76–83 (2017). https://doi.org/10.1016/j.physb.2017.01.005

    ADS  Google Scholar 

  37. N. Chakchouk, B. Louati, K. Guidara, Electrical properties and conduction mechanism study by OLPT model of NaZnPO4 compound. Mater. Res. Bull. 99, 52–60 (2018). https://doi.org/10.1016/J.MATERRESBULL.2017.10.046

    Google Scholar 

  38. M. Tan, Y. Köseoǧlu, F. Alan, E. Şentürk, Overlapping large polaron tunneling conductivity and giant dielectric constant in Ni0.5Zn0.5Fe1.5Cr 0.5O4 nanoparticles (NPs). J. Alloys Compd. 509, 9399–9405 (2011). https://doi.org/10.1016/j.jallcom.2011.07.063

    Google Scholar 

  39. R. Punia, R.S. Kundu, M. Dult, S. Murugavel, N. Kishore, Temperature and frequency dependent conductivity of bismuth zinc vanadate semiconducting glassy system. J. Appl. Phys. 112, 083701 (2012). https://doi.org/10.1063/1.4759356

    ADS  Google Scholar 

  40. M.M. Abdel-Kader, M.A.F. Basha, G.H. Ramzy, A.I. Aboud, Thermal and ac electrical properties of N-methylanthranilic acid below room temperature. J. Phys. Chem. Solids 117, 13–20 (2018). https://doi.org/10.1016/J.JPCS.2018.02.007

    ADS  Google Scholar 

  41. S. Dahiya, R. Punia, S. Murugavel, A.S. Maan, Structural and other physical properties of lithium doped bismuth zinc vanadate semiconducting glassy system. J. Mol. Struct. 1079, 189–193 (2015). https://doi.org/10.1016/j.molstruc.2014.09.047

    ADS  Google Scholar 

  42. A.K. Roy, A. Singh, K. Kumari, K. Amar Nath, A. Prasad, K. Prasad, Electrical Properties and AC Conductivity of (Bi0.5Na0.5)0.94Ba0.06TiO3 Ceramic, ISRN Ceram. 2012 (2012) 1–10. https://doi.org/10.5402/2012/854831

    Google Scholar 

  43. K. Lily, K. Kumari, R.N.P. Prasad, Choudhary, Impedance spectroscopy of (Na0.5Bi0.5)(Zr0.25Ti0.75)O3 lead-free ceramic. J. Alloys Compd. 453, 325–331 (2008). https://doi.org/10.1016/j.jallcom.2006.11.081

    Google Scholar 

  44. K. Prasad, K. Lily, K.P. Kumari, K.L. Chandra, S. Yadav, Sen, Electrical properties of a lead-free perovskite ceramic: (Na0.5Sb0.5)TiO3. Appl. Phys. A. 88, 377–383 (2007). https://doi.org/10.1007/s00339-007-3989-6

    ADS  Google Scholar 

  45. M.A. Diab, N.A. El-Ghamaz, F.S. Mohamed, E.M. El-Bayoumy, Conducting polymers VIII: Optical and electrical conductivity of poly(bis-m-phenylenediaminosulphoxide). Polym. Test. 63, 440–447 (2017). https://doi.org/10.1016/J.POLYMERTESTING.2017.09.001

    Google Scholar 

  46. S. Thakur, R. Rai, I. Bdikin, M.A. Valente, Impedance and modulus spectroscopy characterization of Tb modified Bi0.8 A0.1 Pb0.1 Fe0.9 Ti0.1 O3 ceramics. Mater. Res. 19, 1–8 (2016). https://doi.org/10.1142/S0219720012030011

    Google Scholar 

  47. M. Coskun, O. Polat, F.M. Coskun, Z. Durmus, M. Çaglar, A. Turut, The electrical modulus and other dielectric properties by the impedance spectroscopy of LaCrO3 and LaCr0.90Ir0.10O3 perovskites. RSC Adv. 8, 4634 (2018). https://doi.org/10.1039/C7RA13261A

    Google Scholar 

  48. Z. Imran, M.A. Rafiq, M. Ahmad, K. Rasool, S.S. Batool, M.M. Hasan, Temperature dependent transport and dielectric properties of cadmium titanate nanofiber mats. AIP Adv. 3, 032146 (2013). https://doi.org/10.1063/1.4799756

    ADS  Google Scholar 

  49. M.H. Lakhdar, T. Larbi, B. Khalfallah, B. Ouni, M. Amlouk, Structural, dielectric and a.c. conductivity study of Sb2O3 thin film obtained by thermal oxidation of Sb2S3. Bull. Mater. Sci. 39, 1801–1808 (2016). https://doi.org/10.1007/s12034-016-1335-3

    Google Scholar 

  50. R. Ben Belgacem, M. Chaari, A.F. Braña, B.J. Garcia, A. Matoussi, Structural, electric modulus and complex impedance analysis of ZnO/TiO 2 composite ceramics. J. Am. Ceram. Soc. 100, 2045–2058 (2017). https://doi.org/10.1111/jace.14725

    Google Scholar 

  51. M. Chaari, R. Ben Belgacem, A. Matoussi, Impedance analysis, dielectric relaxation and modulus behaviour of ZnO-Sn 2 O 3 ceramics. J. Alloys Compd. 726, 49–56 (2017). https://doi.org/10.1016/j.jallcom.2017.07.295

    Google Scholar 

  52. M. Coşkun, Ö Polat, F.M. Coşkun, Z. Durmuş, M. Çağlar, A. Türüt, The electrical modulus and other dielectric properties by the impedance spectroscopy of LaCrO 3 and LaCr 0.90 Ir 0.10 O 3 perovskites. RSC Adv 8, 4634–4648 (2018). https://doi.org/10.1039/C7RA13261A

    Google Scholar 

  53. M. Azizar Rahman, A.K.M. Akther, Hossain, Electrical transport properties of Mn–Ni–Zn ferrite using complex impedance spectroscopy. Phys. Scr. 89, 025803 (2014). https://doi.org/10.1088/0031-8949/89/02/025803

    ADS  Google Scholar 

  54. Y. Ben Taher, N. Moutia, A. Oueslati, M. Gargouri, Electrical properties, conduction mechanism and modulus of diphosphate compounds. RSC Adv. 6, 39750–39757 (2016). https://doi.org/10.1039/C6RA05220G

    Google Scholar 

Download references

Acknowledgements

M. A. Rafiq would like to acknowledge Higher Education Commission for financial support under National Research Program for Universities (NRPU Project No 3662). M. A. Rafiq would also like to acknowledge the financial support from Chinese Academy of Sciences Presidents’s International fellowship initiative grant No 2018VTA0002. A. Jamil would like to thank Higher Education Commission for financial support through IRSIP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Rafiq.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamil, A., Fareed, S., Tiwari, N. et al. Effect of titanium doping on conductivity, density of states and conduction mechanism in ZnO thin film. Appl. Phys. A 125, 238 (2019). https://doi.org/10.1007/s00339-019-2544-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2544-6

Navigation