Skip to main content

Advertisement

Log in

Carrier tuning and multiple phonon scattering induced high thermoelectric performance in n-type Sb-doped PbTe alloys

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Much progress on highly efficient thermoelectric materials have been made in the p-type PbTe. However, the n-type PbTe only shows a relatively low figure of merit ZT and conversion efficiency η, which is urgently required to be strengthened and compatible with p-type counterpart from the viewpoint of large-scale applications. Here, we report that n-type Sb-doped PbTe alloys can directly improve the power factor owing to the optimized carrier concentration. Moreover, the unexpected synergistic effect, deriving from alloying and nano-precipitates scattering due to Sb doping, triggers a dramatic reduction of lattice thermal conductivity. Consequently, a remarkable ZT of ~ 1.3 at 673 K in n-type Pb0.98Sb0.02Te and the average ZTave of ~ 0.83 with the calculated conversion efficiency η of ~ 12.3% in a wide temperature range from 323 to 823 Κ are achieved. The present findings demonstrate the excellent potential in n-type Sb-doped PbTe thermoelectric materials through a synergetic carrier tuning and multiple phonon scattering strategy, which provides a new avenue for exploring high-performance thermoelectric materials in n-type PbTe and/or other materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L.E. Bell, Science. 321, 1457–1461 (2008)

    ADS  Google Scholar 

  2. J. He, M.G. Kanatzidis, V.P. Dravid, Mater. Today. 16, 166–176 (2013)

    Google Scholar 

  3. L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Nature. 508, 373–377 (2014)

    ADS  Google Scholar 

  4. C.G. Fu, S.Q. Bai, Y.T. Liu, Y.S. Tang, L.D. Chen, X.B. Zhao, T.J. Zhu, Nat. Commun. 6, 8144 (2015)

    ADS  Google Scholar 

  5. I. Petsagkourakis, K. Tybrandt, X. Crispin, I. Ohkubo, N. Satoh, T. Mori, Sci. Tech. Adv. Mater. 19:1, 836–862 (2018)

    Google Scholar 

  6. T. Mori, S. Priya, MRS Bull. 43, 176–180 (2018)

    Google Scholar 

  7. G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105–114 (2008)

    ADS  Google Scholar 

  8. T.R. Wei, G.J. Tan, C.F. Wu, C. Chang, L.D. Zhao, J.F. Li, G.J. Snyder, M.G. Kanatzidis, App. Phys. Lett. 110, 053901 (2017)

    ADS  Google Scholar 

  9. T. Mori, Small 13, 1702013 (2017)

    Google Scholar 

  10. J. Mao, Z.H. Liu, J.W. Zhou, H.T. Zhu, Q. Zhang, G. Chen, Z.F. Ren, Adv. Phys. 67, 69–147 (2018)

    ADS  Google Scholar 

  11. A.D. LaLonde, Y.Z. Pei, G.J. Snyder, Energy Environ. Sci. 4, 2090 (2011)

    Google Scholar 

  12. K. Biswas, J.Q. He, G.Y. Wang, S.H. Lo, C. Uher, V.P. Dravid, M.G. Kanatzidis, Energy Environ. Sci. 4, 4675 (2011)

    Google Scholar 

  13. Y.Z. Pei, H. Wang, Z.M. Gibbs, A.D. LaLonde, G.J. Snyder, NPG Asia Mater. 4, e28 (2012)

    Google Scholar 

  14. K. Ahn, K. Biswas, J.Q. He, I. Chung, V. Dravid, M.G. Kanatzidis, Energy Environ. Sci. 6, 1529 (2013)

    Google Scholar 

  15. L.D. Zhao, H.J. Wu, S.Q. Hao, C.I. Wu, X.Y. Zhou, K. Biswas, J.Q. He, T.P. Hogan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Energy Environ. Sci. 6, 3346 (2013)

    Google Scholar 

  16. H.J. Wu, L.D. Zhao, F.S. Zheng, D. Wu, Y.L. Pei, X. Tong, M.G. Kanatzidis, J.Q. He, Nat. Commun. 5, 4515 (2014)

    Google Scholar 

  17. G.J. Tan, F.Y. Shi, S.Q. Hao, L.D. Zhao, H. Chi, X.M. Zhang, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Nat. Commun. 7, 12167 (2016)

    ADS  Google Scholar 

  18. Z.W. Chen, Z.Z. Jian, W. Li, Y.J. Chang, B.H. Ge, R. Hanus, J. Yang, Y. Chen, M.X. Huang, G.J. Snyder, Y.Z. Pei, Adv. Mater. 29, 1606768 (2017)

    Google Scholar 

  19. Y.Z. Pei, H. Wang, G.J. Snyder, Adv. Mater. 24(46), 6125 (2012)

    Google Scholar 

  20. C.M. Jaworski, J. Tobola, E.M. Levin, K. Schmidt-Rohr, J.P. Heremans, Phys. Rev. B. 80, 125208 (2009)

    ADS  Google Scholar 

  21. L. Xu, H.Q. Wang, J.C. Zheng, J. Electron. Mater. 40, 641–647 (2011)

    ADS  Google Scholar 

  22. X.C. Xuan, Semicond. Sci. Technol. 17, 114 (2012)

    ADS  Google Scholar 

  23. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G.J. Snyder, Science. 321, 554–557 (2008)

    ADS  Google Scholar 

  24. H.J. Goldsmid, Thermoelectric refrigeration: International cryogenics monograph series (Plenum Press, New York, 1964)

    Google Scholar 

  25. H. Wang, Y.Z. Pei, A.D. LaLonde, G.J. Snyder, Proc. Natl. Acad. Sci. 109, 9705–9709 (2012)

    ADS  Google Scholar 

  26. H.A. Lyden, Phys. Rev. 135, A514–A521 (1964)

    ADS  Google Scholar 

  27. C.B. Vining, CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, FL, 1995), p. 329

    Google Scholar 

  28. Y.Z. Pei, L.L. Zheng, W. Li, S.Q. Lin, Z.W. Chen, Y.Y. Wang, X.F. Xu, H.L. Yu, Y. Chen, B.H. Ge, Adv. Electron. Mater. 2, 1600019 (2016)

    Google Scholar 

  29. Y.Z. Pei, D.T. Morelli, Appl. Phys. Lett. 94, 122112 (2009)

    ADS  Google Scholar 

  30. B. Poudel, Q. Hao, Y. Ma, Y.C. Lan, A. Minnich, B. Yu, X. Yan, D.Z. Wang, A. Muto, D. Vashaee, X.Y. Chen, J.M. Liu, M.S. Dresselhaus, G. Chen, Z.F. Ren, Science 320, 634–638 (2008)

    ADS  Google Scholar 

  31. Y.Z. Pei, J. Lensch-Falk, E.S. Toberer, D.L. Medlin, G.J. Snyder, Adv. Funct. Mater. 21, 241 (2011)

    Google Scholar 

  32. D. Ginting, C.C. Lin, L. Rathnam, J.H. Yun, B.K. Yu, S.J. Kim, J.S. Rhyee, J. Mater. Chem. A 5, 13535–13543 (2017)

    Google Scholar 

  33. Y. Zhang, X.Z. Ke, C.F. Chen, J. Yang, P.R.C. Kent, Phys. Rev. B 80, 024304 (2009)

    ADS  Google Scholar 

  34. Z.T. Tian, J. Garg, K. Esfarjani, T. Shiga, J. Shiomi, G. Chen, Phys. Rev. B 85, 184303 (2012)

    ADS  Google Scholar 

  35. Y.Z. Pei, X.Y. Shi, A. LaLonde, H. Wang, L.D. Chen, G.J. Snyder, Nature 473, 66–69 (2011)

    ADS  Google Scholar 

  36. Q. Zhang, E.K. Chere, Y.M. Wang, H.S. Kim, R. He, F. Cao, K. Dahal, D. Broido, G. Chen, Z.F. Ren, Nano Energy 22, 572–582 (2016)

    Google Scholar 

  37. Y.I. Ravich, B. Efmova, V. Tamarchenko, Phys. Status Solidi B 43, 11 (1971)

    ADS  Google Scholar 

  38. Y.Z. Pei, A.D. LaLonde, H. Wang, G.J. Snyder, Energy Environ. Sci. 5, 7963–7969 (2012)

    Google Scholar 

  39. Y.Z. Pei, Z.M. Gibbs, A. Gloskovskii, B. Balke, W.G. Zeier, G.J. Snyder, Adv. Energy Mater. 4, 1400486 (2014)

    Google Scholar 

  40. P. Jood, M. Ohta, M. Kunii, X.K. Hu, H. Nishiate, A. Yamamoto, M.G. Kanatzidis, J. Mater. Chem. C. 3, 10401 (2015)

    Google Scholar 

  41. Y. Lee, S.-H. Lo, C.Q. Chen, H. Sun, D.Y. Chung, T.C. Chasapis, C. Uher, V.P. Dravid, M.G. Kanatzidis, Nat. Commun. 5, 3640 (2014)

    Google Scholar 

  42. J. Callaway, H.C. von Baeyer, Phys. Rev. 120(4), 1149 (1960)

    ADS  Google Scholar 

  43. D.T. Morelli, J.P. Heremans, G.A. Slack, Phys. Rev. B 66, 195304 (2002)

    ADS  Google Scholar 

  44. E.F. Steigmeier, B. Abeles, Phys. Rev. 136, A1149 (1964)

    ADS  Google Scholar 

  45. L. Yang, J. Wu, L. Zhang, Chin. Phys. 13, 0516 (2004)

    ADS  Google Scholar 

  46. B. Abeles, Phys. Rev. 131, 1906 (1963)

    ADS  Google Scholar 

  47. J. Yang, G.P. Meisner, L. Chen, Appl. Phys. Lett. 85, 1140 (2004)

    ADS  Google Scholar 

  48. M. Ohta, K. Biswas, S.-H. Lo, J. He, D.Y. Chung, V.P. Dravid, M.G. Kanatzidis, Adv. Energy Mater. 2, 1117 (2012)

    Google Scholar 

  49. G.T. Alekseeva, B.A. Efimova, L.M. Ostrovskaya, O.S. Serebryannikova, M.I. Tsypin, Sov. Phys. Semicond. 4, 1122 (1971)

    Google Scholar 

  50. A.U. Khan, K. Kobayashi, D.M. Tang, Y. Yamauchi, K. Hasegawa, M. Mitome, Y.M. Xue, B.Z. Jiang, K. Tsuchiya, D. Golberg, Y. Bando, T. Mori, Nano Energy 31, 152–159 (2017)

    Google Scholar 

  51. G.J. Tan, C.C. Stoumpos, S. Wang, T.P. Bailey, L.D. Zhao, C. Uher, M.G. Kanatzidis, Adv. Energy Mater. 7, 1700099 (2017)

    Google Scholar 

  52. Q. Zhang, E.K. Chere, K. McEnaney, M.L. Yao, F. Cao, Y.Z. Ni, S. Chen, C. Opeil, G. Chen, Z.F. Ren, Adv. Energy Mater. 5, 1401977 (2015)

    Google Scholar 

  53. Q. Zhang, F. Cao, K. Lukas, W.S. Liu, K. Esfarjani, C. Opeil, D. Broido, D. Parker, D.J. Singh, G. Chen, Z.F. Ren, J. Am. Chem. Soc. 134, 17731–17738 (2012)

    Google Scholar 

  54. H.J. Goldsmid, Introduction to thermoelectricity. (Springer, Heidelberg, 2009), pp. 257–270

    Google Scholar 

  55. Y. Yang, K.C. Pradel, Q.S. Jing, J.M. Wu, F. Zhang, Y.S. Zhou, Y. Zhang, Z.L. Wang, ACS Nano. 6, 6984–6989 (2012)

    Google Scholar 

  56. D. Kraemer, Q. Jie, K. McEnaney, F. Cao, W.S. Liu, L.A. Weinstein, J. Loomis, Z.F. Ren, G. Chen, Nat. Energy 1, 16153 (2016)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51771126), the Youth Foundation of Science & Technology Department of Sichuan Province in China (2016JQ0051), the Thousand Talents Program of Sichuan Province in China, and the World First-Class University Construction Funding of China. The authors thank Prof. Yanzhong Pei from Tongji University for his support and discussion on Hall measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Chen, Z., Yin, C. et al. Carrier tuning and multiple phonon scattering induced high thermoelectric performance in n-type Sb-doped PbTe alloys. Appl. Phys. A 125, 225 (2019). https://doi.org/10.1007/s00339-019-2525-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2525-9

Navigation