Skip to main content
Log in

Electroforming-free TaOx memristors using focused ion beam irradiations

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We demonstrate creation of electroforming-free TaOx memristive devices using focused ion beam irradiations to locally define conductive filaments in TaOx films. Electrical characterization shows that these irradiations directly create fully functional memristors without the need for electroforming. Ion beam forming of conductive filaments combined with state-of-the-art nano-patterning presents a CMOS compatible approach to wafer-level fabrication of fully formed operational memristors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. International Roadmap Committee, International Technology Roadmap for Semiconductors: 2013 Edition Executive Summary (Semiconductor Industry Association, 2013). http://www.itrs.net/Links/2013ITRS/2013Chapters/2013ExecutiveSummary.pdf

  2. B. Govoreanu et al., International Electron Devices Meeting, Washington, DC, 2011, pp. 31.6.1–31.6.4. https://doi.org/10.1109/IEDM.2011.6131652

  3. J.J. Yang et al., Nat. Nanotechnol. 3(7), 429–433 (2008)

    Article  Google Scholar 

  4. D.B. Strukov et al., Nature 453(7191), 80–83 (2008)

    Article  ADS  Google Scholar 

  5. A. Sawa, Mater. Today 11(6), 28–36 (2008)

    Article  Google Scholar 

  6. M. Marinella, in Proceedings of the Aerospace Conference, 2013 IEEE. 2–9 March 2013. Big Sky, MT. ISBN: 978-1-4673-1812-9, id.373. https://doi.org/10.1109/AERO.2013.6507427

  7. L.O. Chua, IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  8. L. Chua, Appl. Phys. A 102(4), 765–783 (2011)

    Article  ADS  Google Scholar 

  9. J.J. Yang, D.B. Strukov, D.R. Stewart, Nat. Nanotechnol. 8(1), 13–24 (2013)

    Article  ADS  Google Scholar 

  10. P.R. Mickel et al., Appl. Phys. Lett. 102(22), 223502 (2013)

    Article  ADS  Google Scholar 

  11. P.R. Mickel, A.J. Lohn, M.J. Marinella, Mod. Phys. Lett. B 28(10), 1430003 (2014)

    Article  ADS  Google Scholar 

  12. A.C. Torrezan et al., Nanotechnology 22(48), 485203 (2011)

    Article  Google Scholar 

  13. J.J. Yang et al., Appl. Phys. Lett. 97(23), 232102 (2010)

    Article  ADS  Google Scholar 

  14. M.J. Lee et al., Nat. Mater. 10(8), 625–630 (2011)

    Article  ADS  Google Scholar 

  15. Y. Gonzalez-Velo, H.J. Barnaby, M.N. Kozicki, Semicond. Sci. Technol. 32, 083002 (2017)

    Article  ADS  Google Scholar 

  16. M.J. Marinella et al., IEEE Trans. Nucl. Sci. 59(6), 2987–2994 (2012)

    Article  ADS  Google Scholar 

  17. M. McLain, D. Hughart, D. Hanson, M. Marinella, in 2014 IEEE Aerospace Conference, Big Sky, MT, 2014, pp. 1–9. https://doi.org/10.1109/AERO.2014.6836501

  18. A. Barman et al., J. Phys. D Appl. Phys. https://doi.org/10.1088/1361-6463/aaa559. (in press)

    Article  ADS  Google Scholar 

  19. D.R. Hughart et al., IEEE Trans. Nucl. Sci. 60(6), 4512–4519 (2013)

    Article  ADS  Google Scholar 

  20. H. Barnaby et al., IEEE Trans. Nucl. Sci. 58(6), 2838–2844 (2011)

    Article  ADS  Google Scholar 

  21. D.R. Hughart et al., IEEE Trans. Nucl. Sci. 61(6), 2965–2971 (2014)

    Article  ADS  Google Scholar 

  22. J.P. Strachan et al., Nanotechnology 22(25), 254015 (2011)

    Article  ADS  Google Scholar 

  23. J.J. Yang et al., Nanotechnology 20(21), 215201 (2009)

    Article  ADS  Google Scholar 

  24. J.P. Strachan et al., Beilstein J. Nanotechnol. 4, 467–473 (2013)

    Article  Google Scholar 

  25. P. Bousoulas et al., J. Appl. Phys. 121, 094501 (2017)

    Article  ADS  Google Scholar 

  26. F. Kurnia et al., Appl. Phys. Lett. 102, 152902 (2013)

    Article  ADS  Google Scholar 

  27. Q. Hu et al., Microelectron. Eng. 190, 7–10 (2018)

    Article  Google Scholar 

  28. T.M. Pan, C.H. Lu, Appl. Phys. Lett. 99, 113509 (2011)

    Article  ADS  Google Scholar 

  29. B. Gao et al., IEEE Trans. Electron Devices 60(4), 1379–1383 (2013)

    Article  ADS  Google Scholar 

  30. H. Du et al., Chem. Mater. 29, 3164–3173 (2017)

    Article  Google Scholar 

  31. A.J. Lohn et al., Appl. Phys. Lett. 103(6), 063502 (2013)

    Article  ADS  Google Scholar 

  32. A.J. Lohn, P.R. Mickel, M.J. Marinella, Appl. Phys. Lett. 105(18), 183511 (2014)

    Article  ADS  Google Scholar 

  33. F. Miao et al., Adv. Mater. 23, 5633–5640 (2011)

    Article  Google Scholar 

  34. G. Park et al., Nat. Commun. 4, 3382 (2013)

    Google Scholar 

  35. P.R. Mickel, A.J. Lohn, M.J. Marinella, Appl. Phys. Lett. 105(5), 053503 (2014)

    Article  ADS  Google Scholar 

  36. X. Guan, Y. Shimeng, H.S. Philip Wong, IEEE Trans. Electron Devices 59(4), 1172–1182 (2012)

    Article  ADS  Google Scholar 

  37. M. Alayan et al., IEEE Trans. Nucl. Sci. 64(8), 2038–2045 (2017)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors thank R. Goeke for support with device fabrication. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Bielejec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pacheco, J.L., Perry, D.L., Hughart, D.R. et al. Electroforming-free TaOx memristors using focused ion beam irradiations. Appl. Phys. A 124, 626 (2018). https://doi.org/10.1007/s00339-018-2041-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2041-3

Navigation