Skip to main content

Advertisement

Log in

Al decorated ZnO thin-film photoanode for SPR-enhanced photoelectrochemical water splitting

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Photoelectrochemical (PEC) water splitting has been considered to be a promising approach to ease the energy and environmental crisis. Herein, Al decorated ZnO thin films are successfully achieved through a facile dc magnetron-sputtering method followed with Al evaporation for further enhanced PEC performance. The Al/ZnO thin film with 60 s Al evaporating time exhibits the highest photocurrent density under AM1.5G and visible light irradiation, which are more than 5 and 3 times as the pure ZnO film, respectively. Such surface modification by Al not only enlarges the visible light absorption based on surface plasmonic resonance effect, but facilitates the charge separation and transportation at the electrode/electrolyte interface. Finally, a possible mechanism is proposed for the photocatalytic activity enhancement of Al/ZnO thin film photoanode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Yu, Z. Zhang, X. Yin, A. Kvit, Q. Liao, Z. Kang, X. Yan, Y. Zhang, X. Wang, Enhanced photoelectrochemical efficiency and stability using a conformal TiO2 film on a black silicon photoanode. Nat. Energy 2(6), 17045 (2017)

    Article  ADS  Google Scholar 

  2. I. Roger, M.A. Shipman, M.D. Symes, Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1(1), 0003 (2017)

    Article  Google Scholar 

  3. L. Han, S. Dong, E. Wang, Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv. Mater. 28(42), 9266–9291 (2016)

    Article  Google Scholar 

  4. N. Armaroli, V. Balzani, Solar electricity and solar fuels: status and perspectives in the context of the energy transition. Chemistry 22(1), 32 (2016)

    Article  Google Scholar 

  5. P. Komurcu, E. Kaan Can, E. Aydin, L. Semiz, M. Sankir, N. Demirci, Sankir, Cost-effective fabrication of nanostructured zinc oxide based electrodes for photoelectrochemical water splitting. Mater. Sci. Semicond. Process. 42, 159–164 (2016)

    Article  Google Scholar 

  6. L. Cai, F. Ren, M. Wang, G. Cai, Y. Chen, Y. Liu, S. Shen, L. Guo, V ions implanted ZnO nanorod arrays for photoelectrochemical water splitting under visible light. Int. J. Hydrogen Energy 40(3), 1394–1401 (2015)

    Article  Google Scholar 

  7. H. Li, W. Dong, J. Xi, Z. Li, X. Wu, Z. Ji, Hydropowered photoelectrochemical water splitting solar cell for hydrogen production. J. Alloys Compd. 691, 750–754 (2017)

    Article  Google Scholar 

  8. Z. Tian, H. Cui, G. Zhu, W. Zhao, J. Xu, F. Shao, J. He, F. Huang, Hydrogen plasma reduced black TiO2 nanowires for enhanced photoelectrochemical water-splitting. J. Power Sour. 325, 697–705 (2016)

    Article  ADS  Google Scholar 

  9. D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, T. Goto, Optically pumped lasing of ZnO at room temperature. Appl. Phys. Lett. 70(17), 2230–2232 (1997)

    Article  ADS  Google Scholar 

  10. L. Vayssieres, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 15(5), 464–466 (2003)

    Article  Google Scholar 

  11. X. Zhang, Y. Liu, Z. Kang, 3D branched ZnO nanowire arrays decorated with plasmonic au nanoparticles for high-performance photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 6(6), 4480–4489 (2014)

    Article  Google Scholar 

  12. S. Hilliard, G. Baldinozzi, D. Friedrich, S. Kressman, H. Strub, V. Artero, C. Laberty-Robert, Correction: Mesoporous thin film WO3 photoanode for photoelectrochemical water splitting: a sol–gel dip coating approach. Sustain. Energy Fuels 1(5), 1204–1204 (2017)

    Article  Google Scholar 

  13. Z. Bai, X. Yan, Y. Li, Z. Kang, S. Cao, Y. Zhang, 3D-branched ZnO/CdS nanowire arrays for solar water splitting and the service safety research. Adv. Energy Mater. 6(3), 1501459 (2016)

    Article  Google Scholar 

  14. T. Hong, Z. Liu, X. Zheng, J. Zhang, L. Yan, Efficient photoelectrochemical water splitting over Co3O4 and Co3O4/Ag composite structure. Appl. Catal. B 202, 454–459 (2017)

    Article  Google Scholar 

  15. S. Shuang, R. Lv, Z. Xie, Z. Zhang, Surface plasmon enhanced photocatalysis of Au/Pt-decorated TiO2 nanopillar arrays. Sci. Rep. 6, 26670 (2016)

    Article  ADS  Google Scholar 

  16. P.B. Johnson, Optical constants of the noble metals. Phys. Rev. B 6(12), 4370–4379 (1972)

    Article  ADS  Google Scholar 

  17. J. Liu, L. Yang, H. Zhang, J. Wang, Z. Huang, Ultraviolet–visible chiroptical activity of aluminum nanostructures. Small 13(39), 1701112 (2017)

    Article  Google Scholar 

  18. X. Zhou, Z.T. Gossage, B.H. Simpson, J. Hui, Z.J. Barton, J. Rodriguez-Lopez, Electrochemical imaging of photoanodic water oxidation enhancements on TiO2 thin films modified by subsurface aluminum nanodimers. ACS Nanodimers 10, 9346 (2016)

  19. J.M. Sanz, D. Ortiz, R.A.D.L. Osa, J.M. Saiz, F. González, A.S. Brown, M. Losurdo, H.O. Everitt, F. Moreno, UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects. J. Phys. Chem. C 117(38), 19606–19615 (2013)

    Article  Google Scholar 

  20. L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, J. Zhu, 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics 10(6), 393–398 (2016)

    Article  ADS  Google Scholar 

  21. S. Ramadurgam, T.G. Lin, C. Yang, Aluminum plasmonics for enhanced visible light absorption and high efficiency water splitting in core-multishell nanowire photoelectrodes with ultrathin hematite shells. Nano Lett. 14(8), 4517–4522 (2014)

    Article  ADS  Google Scholar 

  22. J. Martin, M. Kociak, Z. Mahfoud, J. Proust, D. Gerard, J. Plain, High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas. Nano Lett. 14(10), 5517–5523 (2014)

    Article  ADS  Google Scholar 

  23. C. Langhammer, M. Schwind, B. Kasemo, I. Zorić, Localized surface plasmon resonances in aluminum nanodisks. Nano Lett. 8(5), 1461 (2008)

    Article  ADS  Google Scholar 

  24. L. Zhou, C. Zhang, M.J. McClain, A. Manjavacas, C.M. Krauter, S. Tian, F. Berg, H.O. Everitt, E.A. Carter, P. Nordlander, N.J. Halas, Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation. Nano Lett. 16(2), 1478–1484 (2016)

    Article  ADS  Google Scholar 

  25. J.C. Klein, D.M. Hercules, Surface characterization of model Urushibara catalysts. J. Catal. 82(2), 424–441 (1983)

    Article  Google Scholar 

  26. Z. Peng, D. Wu, W. Wang, F. Tan, X. Wang, J. Chen, X. Qiao, Effect of metal ion doping on ZnO nanopowders for bacterial inactivation under visible-light irradiation. Powder Technol. 315, 73–80 (2017)

    Article  Google Scholar 

  27. H. Li, Y. Qi, Z. Li, Z. Ji, X. Wu, ZnO photoanodes coated with Ni-based nanostructured electrocatalyst for water oxidation. J. Alloys Compd. 661, 201–205 (2016)

    Article  Google Scholar 

  28. Y. Mao, H. Yang, J. Chen, J. Chen, Y. Tong, X. Wang, Significant performance enhancement of ZnO photoanodes from Ni(OH)2 electrocatalyst nanosheets overcoating. Nano Energy 6, 10–18 (2014)

    Article  Google Scholar 

  29. G. Zhu, H. Yin, C. Yang, H. Cui, Z. Wang, J. Xu, T. Lin, F. Huang, Black titania for superior photocatalytic hydrogen production and photoelectrochemical water splitting. ChemCatChem 7(17), 2614–2619 (2015)

    Article  Google Scholar 

  30. H. Lahmar, F. Setifi, A. Azizi, G. Schmerber, A. Dinia, On the electrochemical synthesis and characterization of p-Cu2O/n-ZnO heterojunction. J. Alloys Compd. 718, 36–45 (2017)

    Article  Google Scholar 

  31. Z. Han, M. Luo, L. Chen, J. Chen, C. Li, A photoelectrochemical immunosensor for detection of α-fetoprotein based on Au–ZnO flower-rod heterostructures. Appl. Surf. Sci. 402, 429–435 (2017)

    Article  ADS  Google Scholar 

  32. M.T. Qamar, M. Aslam, Z.A. Rehan, M.T. Soomro, J.M. Basahi, I.M.I. Ismail, T. Almeelbi, A. Hameed, The influence of p-type Mn3O4 nanostructures on the photocatalytic activity of ZnO for the removal of bromo and chlorophenol in natural sunlight exposure. Appl. Catal. B 201, 105–118 (2017)

    Article  Google Scholar 

  33. Y. Tian, T. Tatsuma, Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc. 127(20), 7632–7637 (2005)

    Article  Google Scholar 

  34. P. Zhang, T. Wang, J. Gong, Mechanistic understanding of the plasmonic enhancement for solar water splitting. Adv. Mater. 27(36), 5328–5342 (2015)

    Article  Google Scholar 

  35. Z. Liu, W. Hou, P. Pavaskar, M. Aykol, S.B. Cronin, Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett. 11(3), 1111 (2011)

    Article  ADS  Google Scholar 

  36. V. Mizeikis, E. Kowalska, S. Juodkazis, Resonant localization, enhancement, and polarization of optical fields in nano-scale interface regions for photo-catalytic applications. J. Nanosci. Nanotechnol. 11(4), 2814 (2011)

    Article  Google Scholar 

  37. W. Hou, S.B. Cronin, A review of surface plasmon resonance-enhanced photocatalysis. Adv. Funct. Mater. 23(13), 1612–1619 (2013)

    Article  Google Scholar 

Download references

Funding

This study was funded by Zhejiang Provincial Natural Science Foundation of China (Grant no. LGG18E020004) and Science and Technology Project of Zhejiang Province (Grant no. 2015C37037).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongxia Li or Xin Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Li, X., Dong, W. et al. Al decorated ZnO thin-film photoanode for SPR-enhanced photoelectrochemical water splitting. Appl. Phys. A 124, 412 (2018). https://doi.org/10.1007/s00339-018-1830-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1830-z

Navigation