Skip to main content
Log in

Passivation properties of alumina for multicrystalline silicon nanostructure prepared by spin-coating method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we report passivation properties of inverted pyramidal nanostructure based multi-crystalline silicon (mc-Si) by Al2O3 films with spin-coating method. Precursors AlCl3 and Al(acac)3 for Al2O3 films were chosen for comparison. Al2O3/SiOx stacks were found to be able to passivate the nanostructured surface well. With the number of spin-coating up to five, the Al2O3 films could conformally attach the nanostructure. The weighted average reflectance values (ranging from 400–900 nm) of the passivated silicon surface could be reduced to 10.74% (AlCl3) and 11.12% (Al(acac)3), and the effective carrier lifetime could reach 7.84 and 16.98 μs, respectively. This work presented a potential process to fabricate low cost high efficiency mc-Si solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.A. Green, S. Bremner, Nat. Mater. 16(1), 23–34 (2016)

    Article  ADS  Google Scholar 

  2. T.H. Her, R.J. Finlay, C. Wu et al., Appl. Phys. Lett. 73(12), 1673–1675 (1998)

    Article  ADS  Google Scholar 

  3. X. Liu, P. Coxon, M. Peters et al., Energy Environ. Sci. 7(10), 3223–3263 (2014)

    Article  Google Scholar 

  4. S. Zhong, Z. Huang, X. Lin et al., Adv. Mater. 27(3), 555–561 (2015)

    Article  Google Scholar 

  5. Z. Huang, N. Geyer, P. Werner et al., Adv. Mater. 23(2), 285–308 (2011)

    Article  Google Scholar 

  6. J. Oh, H.C. Yuan, H.M. Branz, Nat. Nanotechnol. 7(11), 743–748 (2012)

    Article  ADS  Google Scholar 

  7. Z. Yue, H. Shen, Y. Jiang et al., Appl. Phys. A 116(2), 683–688 (2014)

    Article  ADS  Google Scholar 

  8. M. Algasinger, J. Paye, F. Werner et al., Adv. Energy Mater. 3(8), 1068–1074 (2013)

    Article  Google Scholar 

  9. Z. Huang, X. Song, S. Zhong et al., Adv. Func. Mater. 26(12), 1892–1898 (2016)

    Article  Google Scholar 

  10. W.C. Wang, C.W. Lin, H.J. Chen et al., ACS Appl. Mater. Interfaces 5(19), 9752–9759 (2013)

    Article  Google Scholar 

  11. S. Mack, A. Wolf, C. Brosinsky et al., IEEE J. Photovolt. 1(2), 135–145 (2011)

    Article  Google Scholar 

  12. Z. Liang, D. Chen, C. Feng et al., Phys. Procedia 18, 51–55 (2011)

    Article  ADS  Google Scholar 

  13. Y. Liu, T. Lai, H. Li et al., Small 8(9), 1392–1397 (2012)

    Article  Google Scholar 

  14. D.K. Simon, P.M. Jordan, I. Dirnstorfer et al., Sol. Energy Mater. Sol. Cells 131, 72–76 (2014)

    Article  Google Scholar 

  15. J.W. Song, J.Y. Jung, H.D. Um et al., Adv. Mater. Interfaces 1(5) (2014)

  16. B. Hu, M. Yao, R. Xiao et al., Ceram. Int. 40(9), 14133–14139 (2014)

    Article  Google Scholar 

  17. G.G. Untila, T.N. Kost, A.B. Chebotareva et al., Semiconductors 46(6), 832–837 (2012)

    Article  ADS  Google Scholar 

  18. R. Watanabe, M. Kawashima, Y. Saito, Thin Solid Films 590, 98–102 (2015)

    Article  ADS  Google Scholar 

  19. N. Balaji, C. Park, J. Raja et al., J. Nanosci. Nanotechnol. 15(7), 5123–5128 (2015). 6)

    Article  Google Scholar 

  20. Y. Jiang, H. Shen, T. Pu et al., Sol. Energy 142, 91–96 (2017)

    Article  ADS  Google Scholar 

  21. Asuha, K. Takuya, M. Osamu et al., Appl. Phys. Lett. 81(18), 3410–3412 (2002)

    Article  ADS  Google Scholar 

  22. Asuha, I. Shigeki, T. Masao et al., Appl. Phys. Lett. 85(17), 3783–3785 (2002)

    Article  Google Scholar 

  23. Y. Wang, L. Yang, Y. Liu et al., Sci. Rep. 5 (2015)

  24. H.Y. Chen, H.L. Lu, Q.H. Ren et al., Nanoscale 7(37), 15142–15148 (2015)

    Article  ADS  Google Scholar 

  25. B.P. Dhonge, T. Mathews, S.T. Sundari et al., Appl. Surf. Sci. 258(3), 1091–1096 (2011)

    Article  ADS  Google Scholar 

  26. G. Agostinelli, A. Delabie, P. Vitanov et al., Sol. Energy Mater. Sol. Cells 90, 3438–3443 (2006)

    Article  Google Scholar 

  27. B. Liu, S. Zhong, J. Liu et al., Int. J. Photoenergy 971093, 1–5 (2012)

    Google Scholar 

  28. F. Khan, S.H. Baek, J.H. Kim, Semicond. Sci. Technol. 30(1), 015012 (2014)

    Article  ADS  Google Scholar 

  29. A. Serpengüzel, A. Kurt, I. Inanç et al., J. Nanophotonics 2(021770), 021770 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the Fundamental Research Funds for the Central Universities (3082017NP2017106), National Nature Science Foundation of China (61176062), a Joint Frontier Research Project of Jiangsu Province (BY2016003-09), a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglie Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Shen, H., Yang, W. et al. Passivation properties of alumina for multicrystalline silicon nanostructure prepared by spin-coating method. Appl. Phys. A 124, 95 (2018). https://doi.org/10.1007/s00339-017-1542-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1542-9

Navigation