Skip to main content
Log in

Characterization and magnetic properties study for magnetite nanoparticles obtained by pulsed laser ablation in water

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Magnetite (Fe3O4) nanoparticles of 1–10 nm (with the maximum at 2 nm) were obtained via pulsed laser ablation of iron target in water in form of a stable dispersion without addition of surfactants and stabilizers. The structure of the material obtained was investigated using transmission electron microscopy, scanning electron microscopy, and Brunauer–Emmett–Teller methods. To investigate the composition of the particles in the sample, such methods as Fourier transform infrared spectroscopy, Raman spectroscopy, differential scanning calorimetry, and X-ray diffraction, were applied. Magnetite phase was found to be sufficiently pure, it was not contaminated by other iron oxide phases and contained not more than 0.5% of metallic iron in form of large particles. The study of the magnetic properties of the magnetite nanoparticles obtained has shown that they exhibit ferrimagnetic behavior at room temperature with the paramagnetic contribution explained by the presence of fine superparamagnetic particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E. Vahabzadeh, M. Torkamany, J. Cluster Sci. 25, 959 (2014)

    Article  Google Scholar 

  2. C. Baker, S. Ismat Shah, S.K. Hasanain, J. Magn. Magn. Mater. 280, 412 (2004)

    Article  ADS  Google Scholar 

  3. C. Wen, H. Xie, Z. Zhang, L. Wu, J. Hu, M. Tang, M. Wu, D. Pang, Nanoscale 8, 12406 (2016)

    Article  ADS  Google Scholar 

  4. O. Penon, M.J. Marin, D.B. Amabilino, D.A. Russell, L. Perez-Garcia, J. Colloid Interface Sci. 462, 154 (2016)

    Article  ADS  Google Scholar 

  5. J. Zhang, N. Chen, H. Wang, W. Gu, K. Liu, P. Ai, C. Yan, L. Ye, J. Colloid Interface Sci. 469, 86 (2016)

    Article  ADS  Google Scholar 

  6. H. Liu, J. Zhang, X. Chen, X. Du, J. Zhang, G. Liu, W. Zhang, Nanoscale 8, 7808 (2016)

    Article  ADS  Google Scholar 

  7. S. Yu, J. Wan, K.A. Chen, J. Colloid Interface Sci. 461, 173 (2016)

    Article  ADS  Google Scholar 

  8. D. Xu, T. Xu, X. Guo, Q. Liu, J. Liu, W. Lv, X. Jing, H. Zhang, J. Wang, New J. Chem. 41, 5305 (2017)

    Article  Google Scholar 

  9. K. Wu, J.P. Wang, AIP Adv. 7, 056327 (2017)

    Article  ADS  Google Scholar 

  10. M. Qi, K. Zhang, S. Li, J. Wu, C. Pham-Huy, X. Diao, D. Xiao, H. He, New J. Chem. 40, 4480 (2016)

    Article  Google Scholar 

  11. W. Wu, C. Jiang, V.A.L. Roy, Nanoscale 8, 19421 (2016)

    Article  Google Scholar 

  12. C. Sciancalepore, F. Bondioli, T. Manfredini, A. Gualtieri, Mater. Charact. 100, 88 (2014)

    Article  Google Scholar 

  13. S.G. Mendo, A.F. Alves, L.P. Ferreira, M.M. Cruz, M.H. Mendonca, M. Godinho, M.D. Carvalho, New J. Chem. 39, 7182 (2015)

    Article  Google Scholar 

  14. M. Aghazadeh, I. Karimzadeh, T. Doroudi, M.R. Ganjali, P.H. Kolivand, D. Gharailou, Appl. Phys. A 123, 529 (2017)

    Article  ADS  Google Scholar 

  15. G.W. Yang, Prog. Mater. Sci 52, 648 (2007)

    Article  Google Scholar 

  16. B.K. Pandey, A.K. Shahi, J. Shah, R.K. Kotnala, R. Gopal, Appl. Surf. Sci. 289, 462 (2014)

    Article  ADS  Google Scholar 

  17. P. Maneeratanasarn, T.V. Khai, S.Y. Kim, B.G. Choi, K.B. Shim, Phys. Status Solidi A 210, 563 (2013)

    Article  ADS  Google Scholar 

  18. S. Mollah, S.J. Henley, C.E. Giusca, S.R.P. Silva, Integr. Ferroelectr. 119, 45 (2010)

    Article  Google Scholar 

  19. T. De Bonis, A. Lovaglio, A. Galasso, R. Santagata, Teghil, Appl. Surf. Sci. 353, 433 (2015)

    Article  ADS  Google Scholar 

  20. H.L. Aye, S. Choopun, T. Chairuangsri, J. Nat. Sci. 13, 37 (2014)

    Google Scholar 

  21. I.A. Sukhov, A.V. Simakin, G.A. Shafeev, G. Viau, C. Garcia, Quantum Electron 42, 453 (2012)

    Article  ADS  Google Scholar 

  22. A.I. Omelchenko, E.N. Sobol, A.V. Simakin, A.A. Serkov, I.A. Sukhov, G.A. Shafeev, Laser Phys. 25, 025607 (2015)

    Article  ADS  Google Scholar 

  23. T. Iwamoto, T. Ishigaki, J. Phys. Conf. Ser. 441, 012034 (2013)

    Article  Google Scholar 

  24. E. Vahabzadeh, M.J. Torkamany, J. Cluster Sci. 25, 959 (2014)

    Article  Google Scholar 

  25. V.A. Svetlichnyi, A.V. Shabalina, I.N. Lapin, Russ. Phys. J. 59(12), 2012 (2017)

    Article  Google Scholar 

  26. C.C.P. Chan, H. Gallard, P. Majewski, J. Nanopart. Res. 14, 828 (2012)

    Article  ADS  Google Scholar 

  27. D.A. Velikanov, Vibration Magnetic Meter, RU Pat. 2341810 (2008)

  28. D. Zhang, B. Gokce, S. Barcikowski, Chem. Rev. 117, 3990 (2017)

    Article  Google Scholar 

  29. S. Das, M.J. Hendry, Chem. Geol. 290, 101 (2011)

    Article  ADS  Google Scholar 

  30. D.L.A. De Faria, S. Venancio Silva, M.T. De Oliveira, J. Raman Spectrosc. 28, 873 (1997)

    Article  ADS  Google Scholar 

  31. M. Aliahmad, N. Nasiri Moghaddam, Mater. Sci. Pol. 31, 264 (2013)

    Article  ADS  Google Scholar 

  32. Y.S. Li, J.S. Church, A.L. Woodhead, J. Magn. Magn. Mater. 324, 1543 (2012)

    Article  ADS  Google Scholar 

  33. O.N. Shebanova, P. Lazor, J. Solid State Chem. 174, 424 (2003)

    Article  ADS  Google Scholar 

  34. O.N. Shebanova, P. Lazor, J. Raman Spectrosc. 34, 845 (2003)

    Article  ADS  Google Scholar 

  35. O.S. Ivanova, I.S. Edelman, R.D. Ivantsov, E.A. Petrakovskaja, D.A. Velikanov, N.N. Trofimova, Y.V. Zubavichus, Solid State Phenom. 215, 173 (2014)

    Article  Google Scholar 

  36. V. Amendola, M. Meneghetti, G. Granozzi, S. Agnoli, S. Polizzi, P. Riello, A. Boscaini, C. Anselmi, G. Fracasso, M. Colombatti, C. Innocenti, D. Gatteschi, C. Sangregorio, J. Mater. Chem. 21, 3803 (2011)

    Article  Google Scholar 

  37. G.F. Goya, T.S. Berquo, F.C. Fonseca, M.P. Morales, J. Appl. Phys. 94(5), 3520 (2003)

    Article  ADS  Google Scholar 

  38. J. Lunacek, O. Zivotsky, Y. Jiraskova, J. Bursık, P. Janos, Mater. Charact. 120, 295 (2016)

    Article  Google Scholar 

  39. P.V. Hendriksen, S. Linderoth, P.A. Lindgard, J. Phys. Condens. Matter 5, 5675 (1993)

    Article  ADS  Google Scholar 

  40. E.W. Gorter, Philips Res Rep 9(4), 295 (1954)

    Google Scholar 

Download references

Acknowledgements

This work was conducted as a government task of the Ministry of Education and Science of the Russian Federation, Project Number 3.9604.2017/8.9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shabalina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svetlichnyi, V.A., Shabalina, A.V., Lapin, I.N. et al. Characterization and magnetic properties study for magnetite nanoparticles obtained by pulsed laser ablation in water. Appl. Phys. A 123, 763 (2017). https://doi.org/10.1007/s00339-017-1390-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1390-7

Keywords

Navigation