Skip to main content
Log in

Effect of boron incorporation on slow interface traps in SiO2/4H-SiC structures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The reason for the effective removal of interface traps in SiO2/4H-SiC (0001) structures by boron (B) incorporation was investigated by employing low-temperature electrical measurements. Low-temperature capacitance–voltage and thermal dielectric relaxation current measurements revealed that the density of electrons captured in slow interface traps in B-incorporated oxide is lower than that in dry and NO-annealed oxides. These results suggest that near-interface traps can be removed by B incorporation, which is considered to be an important reason for the increase in the field-effect mobility of 4H-SiC metal–oxide–semiconductor devices. A model for the passivation mechanism is proposed that takes account of stress relaxation during thermal oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Harada, R. Kosugi, J. Senzaki, W.J. Cho, K. Fukuda, K. Arai, S. Suzuki, J. Appl. Phys. 91, 1568 (2002)

    Article  ADS  Google Scholar 

  2. H. Li, S. Dimitrijev, H.B. Harrison, D. Sweatman, Appl. Phys. Lett. 70, 2028 (1997)

    Article  ADS  Google Scholar 

  3. G.Y. Chung, C.C. Tin, J.R. Williams, K. McDonald, R.K. Chanana, R.A. Weller, S.T. Pantelides, L.C. Feldman, O.W. Holland, M.K. Das, J.W. Palmour, IEEE Electron Device Lett. 22, 176 (2001)

    Article  ADS  Google Scholar 

  4. J. Rozen, A.C. Ahyi, X. Zhu, J.R. Williams, L.C. Feldman, I.E.E.E. Trans, Electron Devices 58, 3808 (2011)

    Article  ADS  Google Scholar 

  5. G. Gudjónsson, H.Ö. Ólafsson, F. Allerstam, P.-Å. Nilsson, E.Ö. Sveinbjörnsson, H. Zirath, T. Rödle, R. Jos, IEEE Electron Device Lett. 26, 96 (2005)

    Article  ADS  Google Scholar 

  6. D. Okamoto, H. Yano, K. Hirata, T. Hatayama, T. Fuyuki, IEEE Electron Device Lett. 31, 710 (2010)

    Article  ADS  Google Scholar 

  7. D. Okamoto, M. Sometani, S. Harada, R. Kosugi, Y. Yonezawa, H. Yano, IEEE Electron Device Lett. 35, 1176 (2014)

    Article  ADS  Google Scholar 

  8. V. Soler, M. Cabello, J. Montserrat, J. Rebollo, J. Millán, P. Godignon, M. Berthou, E. Bianda, A. Mihaila, 4.5 kV SiC MOSFET with Boron Doped Gate Dielectric, in Proc. 28th Int. Symp. Power Semiconductor Devices and ICs (ISPSD), pp. 283–286 (Prague, Czech Republic, 2016)

  9. P. Fiorenza, F. Giannazzo, M. Vivona, A. La Magna, F. Roccaforte, Appl. Phys. Lett. 103, 153508 (2013)

    Article  ADS  Google Scholar 

  10. G. Liu, A.C. Ahyi, Y. Xu, T. Isaacs-Smith, Y.K. Sharma, J.R. Williams, L.C. Feldman, S. Dhar, IEEE Electron Device Lett. 34, 181 (2013)

    Article  ADS  Google Scholar 

  11. V.V. Afanas’ev, M. Bassler, G. Pensl, M. Schulz, Phys. Status Solidi A 162, 321 (1997)

    Article  ADS  Google Scholar 

  12. G. Pensl, M. Bassler, F. Ciobanu, V. V. Afanas’ev, H. Yano, T. Kimoto, H. Matsunami, Mater. Res. Soc. Symp. Proc. 640, H3.2.1 (2001)

  13. V.V. Afanas’ev, A. Stesmans, Phys. Rev. Lett. 78, 2437 (1997)

    Article  ADS  Google Scholar 

  14. V.V. Afanas’ev, A. Stesmans, M. Bassler, G. Pensl, M.J. Schulz, Appl. Phys. Lett. 76, 336 (2000)

    Article  ADS  Google Scholar 

  15. V.V. Afanas’ev, A. Stesmans, F. Ciobanu, G. Pensl, K.Y. Cheong, S. Dimitrijev, Appl. Phys. Lett. 82, 568 (2003)

    Article  ADS  Google Scholar 

  16. F. Allerstam, H.Ö. Ólafsson, G. Gudjónsson, D. Dochev, E.Ö. Sveinbjörnsson, T. Rödle, R. Jos, J. Appl. Phys. 101, 124502 (2007)

    Article  ADS  Google Scholar 

  17. P.G. Hermannsson, E.Ö. Sveinbjörnsson, Mater. Sci. Forum 717–720, 761 (2012)

    Article  Google Scholar 

  18. D. Okamoto, H. Yano, T. Hatayama, T. Fuyuki, Appl. Phys. Lett. 96, 203508 (2010)

    Article  ADS  Google Scholar 

  19. T.E. Rudenko, I.N. Osiyuk, I.P. Tyagulski, H.Ö. Ólafsson, E.Ö. Sveinbjörnsson, Solid-State Electron. 49, 545 (2005)

    Article  ADS  Google Scholar 

  20. A.J. Lelis, R. Green, D.B. Habersat, M. El, I.E.E.E. Trans, Electron Devices 62, 316 (2015)

    Article  ADS  Google Scholar 

  21. C.T. Yen, C.C. Hung, H.T. Hung, C.Y. Lee, L.S. Lee, Y.F. Huang, F.J. Hsu, Appl. Phys. Lett. 108, 012106 (2016)

    Article  ADS  Google Scholar 

  22. P. Fiorenza, A.L. Magna, M. Vivona, F. Roccaforte, Appl. Phys. Lett. 109, 012102 (2016)

    Article  ADS  Google Scholar 

  23. R. Kosugi, K. Fukuda, K. Arai, Mater. Sci. Forum 483–485, 669 (2005)

    Article  Google Scholar 

  24. H. Yoshioka, T. Nakamura, T. Kimoto, J. Appl. Phys. 111, 014502 (2012)

    Article  ADS  Google Scholar 

  25. A.V. Penumatcha, S. Swandono, J.A. Cooper, I.E.E.E. Trans, Electron Devices 60, 923 (2013)

    Article  ADS  Google Scholar 

  26. X.D. Chen, S. Dhar, T. Isaacs-Smith, J.R. Williams, L.C. Feldman, P.M. Mooney, J. Appl. Phys. 103, 033701 (2008)

    Article  ADS  Google Scholar 

  27. N. Yoshida, E. Waki, M. Arai, K. Yamasaki, J.H. Han, M. Takenaka, S. Takagi, Thin Solid Films 557, 237 (2014)

    Article  ADS  Google Scholar 

  28. R. Schörner, P. Friedrichs, D. Peters, D. Stephani, IEEE Electron Device Lett. 20, 241 (1999)

    Article  ADS  Google Scholar 

  29. J.M. Knaup, P. Deák, Th Frauenheim, A. Gali, Z. Hajnal, W.J. Choyke, Phys. Rev. B 72, 115323 (2005)

    Article  ADS  Google Scholar 

  30. F. Devynck, A. Alkauskas, P. Broqvist, A. Pasquarello, Phys. Rev. B 84, 235320 (2011)

    Article  ADS  Google Scholar 

  31. H. Kageshima, K. Shiraishi, Phys. Rev. Lett. 81, 5936 (1998)

    Article  ADS  Google Scholar 

  32. Y. Hijikata, H. Yaguchi, S. Yoshida, Appl. Phys. Express 2, 021203 (2009)

    Article  ADS  Google Scholar 

  33. Y. Hijikata, H. Yaguchi, S. Yoshida, Mater. Sci. Forum 615–617, 489 (2009)

    Article  Google Scholar 

  34. S. Miyazaki, K. Morino, M. Hirose, Solid State Phenom. 76–77, 149 (2001)

    Article  Google Scholar 

  35. K. Morino, S. Miyazaki, M. Hirose, Phosphorus incorporation in ultrathin gate oxides and its impact to the network structure, Ext. Abst. of 1997, in Int. Conf. Solid State Device and Materials (SSDM), pp. 18–19 (Hamamatsu, Japan, 1997)

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 26820136 [Grant-in-Aid for Young Scientists (B)]. We thank T. Fuyuki and A. Tani at Nara Institute of Science and Technology (NAIST) for their help with the low-temperature measurements. We also thank the AIST SiC Power Device Team for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dai Okamoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okamoto, D., Sometani, M., Harada, S. et al. Effect of boron incorporation on slow interface traps in SiO2/4H-SiC structures. Appl. Phys. A 123, 133 (2017). https://doi.org/10.1007/s00339-016-0724-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0724-1

Keywords

Navigation