Skip to main content
Log in

Numerical study on the free vibration of carbon nanocones resting on elastic foundation using nonlocal shell model

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Employing the variational differential quadrature method, the free vibration of carbon nanocones (CNCs) embedded in an elastic foundation, is studied based on nonlocal elasticity theory. On the basis of the first-order shear deformation theory, the energy functional of the CNC is presented and then discretized by employing the generalized differential quadrature method in the axial direction and periodic differential operators in the circumferential direction. According to Hamilton’s principle and using matrix relations, the reduced forms of mass and stiffness matrices are readily obtained. The results of present study are compared to those obtained by molecular mechanics to verify the proposed approach. In addition, the effects of nonlocal parameter, boundary conditions, semi-apex angle and both Winkler and Pasternak coefficients of elastic foundation are examined on the vibrational behavior of CNCs. The results indicate that the increase in nonlocal parameter and elastic foundation coefficients decreases and increases the fundamental frequency of CNCs, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Ge, K. Sattler, Observation of Fullerene Cones. Chem. Phys. Lett. 220, 192–196 (1994)

    Article  ADS  Google Scholar 

  2. A. Krishnan, E. Dujardin, M.M.J. Treacy, J. Hugdahl, S. Lynum, T.W. Ebbesen, Graphitic cones and the nucleation of curved carbon surfaces. Nature 388, 451–454 (1997)

    Article  ADS  Google Scholar 

  3. A. Mohammadi, F. Kaminski, V. Sandoghdar, M. Agio, Fluorescence enhancement with the optical (bi-) conical antenna. J. Phys. Chem. C 114, 7372–7377 (2010)

    Article  Google Scholar 

  4. C. Yeh, M. Chen, J. Hwang, J.Y. Gan, C. Kou, Field emission from a composite structure consisting of vertically aligned single-walled carbon nanotubes and carbon nanocones. Nanotechnology 17, 5930–5934 (2006)

    Article  ADS  Google Scholar 

  5. S. Akita, M. Nishio, Y. Nakayama, Buckling of multiwall carbon nanotubes under axial compression. Jpn. J. Appl. Phys. 45, 5586–5589 (2006)

    Article  ADS  Google Scholar 

  6. Y.R. Jeng, P.C. Tsai, T.H. Fang, Experimental and numerical investigation into buckling instability of carbon nanotube probes under nanoindentation. Appl. Phys. Lett. 90, 161913 (2007)

    Article  ADS  Google Scholar 

  7. M. Endo, Y.A. Kim, T. Hayashi, Y. Fukai, K. Oshida, M. Terrones, T. Yanagisawa, S. Higaki, M.S. Dresselhaus, Structural characterization of cup-stacked-type nanofibers with an entirely hollow core. Appl. Phys. Lett. 80, 1267 (2002)

    Article  ADS  Google Scholar 

  8. H. Terrones, T. Hayashi, M. Muñoz-Navia, M. Terrones, Y.A. Kim, N. Grobert, R. Kamalakaran, J. Dorantes-Dávila, R. Escudero, M.S. Dresselhaus, M. Endo, Graphitic cones in palladium catalysed carbon nanofibres. Chem. Phys. Lett. 343, 241 (2001)

    Article  ADS  Google Scholar 

  9. M.M.S. Fakhrabadi, N. Khani, S. Pedrammehr, Vibrational analysis of single-walled carbon nanocones using molecular mechanics approach. Phys. E 44, 1162–1168 (2012)

    Article  Google Scholar 

  10. Y.G. Hu, K.M. Liew, X.Q. He, Z. Li, J. Han, Free transverse vibration of single-walled carbon nanocones. Carbon 50, 4418–4423 (2012)

    Article  Google Scholar 

  11. R.D. Firouz-Abadi, H. Amini, A.R. Hosseinian, Assessment of the resonance frequency of cantilever carbon nanocones using molecular dynamics simulation. Appl. Phys. Lett. 100, 173108 (2012)

    Article  ADS  Google Scholar 

  12. P. Tsai, T. Fang, A molecular dynamics study of the nucleation, thermal stability and nanomechanics of carbon nanocones. Nanotechnology 18, 105702 (2007)

    Article  ADS  Google Scholar 

  13. R. Ansari, A. Momen, S. Rouhi, S. Ajori, On the vibration of single-walled carbon nanocones: molecular mechanics approach versus molecular dynamics simulations. Shock Vib. 2014, 410783 (2014)

    Google Scholar 

  14. T. Belytschko, S.P. Xiao, G.C. Schatz, R.S. Ruoff, Atomistic simulations of nanotube fracture. Phys. Rev. B 65, 235430 (2002)

    Article  ADS  Google Scholar 

  15. J.W. Yan, L.W. Zhang, K.M. Liew, L.H. He, A higher-order gradient theory for modeling of the vibration behavior of single-wall carbon nanocones. Appl. Math. Model. 38, 2946–2960 (2014)

    Article  MathSciNet  Google Scholar 

  16. P. Sharma, S. Ganti, N. Bhate, Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 82, 535 (2003)

    Article  ADS  Google Scholar 

  17. C.T. Sun, H. Zhang, Size-dependent elastic moduli of plate like nanomaterials. J. Appl. Phys. 93, 1212 (2003)

    Article  ADS  Google Scholar 

  18. A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  ADS  Google Scholar 

  19. A.C. Eringen, Nonlocal Continuum Field Theories (Springer, New York, 2002)

    MATH  Google Scholar 

  20. J. Peddieson, G.R. Buchanan, R.P. McNitt, Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41, 305–312 (2003)

    Article  Google Scholar 

  21. B. Arash, Q. Wang, Vibration of single- and double-layered graphene sheets. J. Nanotechnol. Eng. Med. 2, 011012 (2011)

    Article  Google Scholar 

  22. M. Mohammadi, M. Ghayour, A. Farajpour, Free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the nonlocal continuum plate model. Compos.: Part B 45, 32–42 (2013)

    Article  Google Scholar 

  23. Y.Q. Zhang, G.R. Liu, J.S. Wang, Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression. Phys. Rev. B 70, 205430 (2004)

    Article  ADS  Google Scholar 

  24. Q. Wang, V.K. Varadan, S.T. Quek, Small scale effect on elastic buckling of carbon nanotubes with nonlocal continuum models. Phys. Lett. A 357, 130–135 (2006)

    Article  ADS  Google Scholar 

  25. S.C. Pradhan, G.K. Reddy, Analysis of single walled carbon nanotube on Winkler foundation using nonlocal elasticity theory and DTM. Comput. Mater. Sci. 50, 1052–1056 (2011)

    Article  Google Scholar 

  26. R. Ansari, J. Torabi, Nonlocal vibration analysis of circular double-layered graphene sheets resting on elastic foundation subjected to thermal loading. Acta. Mech. Sin. 32, 841–853 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  27. R.F. Gibson, O.E. Ayorinde, Y.F. Wen, Vibration of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 67, 1–28 (2007)

    Article  Google Scholar 

  28. A.R. Setoodeh, M. Khosrownejad, P. Malekzadeh, Exact nonlocal solution for postbuckling of single-walled carbon nanotubes. Phys. E 43, 1730–1737 (2011)

    Article  Google Scholar 

  29. H.S. Shen, C.L. Zhang, Nonlocal beam model for nonlinear analysis of carbon nanotubes on elastomeric substrates. Comput. Mater. Sci. 50, 1022–1029 (2011)

    Article  Google Scholar 

  30. L. Ke, Y. Xiang, J. Yang, S. Kitipornchai, Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory. Comput. Mater. Sci. 47, 676–683 (2009)

    Article  Google Scholar 

  31. T. Murrmu, S.C. Pradhan, Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory. Comput. Mater. Sci. 46, 854–859 (2009)

    Article  Google Scholar 

  32. R. Ansari, H. Ramezannezhad, Nonlocal Timoshenko beam model for the large-amplitude vibrations of embedded multiwalled carbon nanotubes including thermal effects. Phys. E 43, 1171–1178 (2011)

    Article  Google Scholar 

  33. R. Ansari, A. Shahabodini, H. Rouhi, A thickness-independent nonlocal shell model for describing the stability behavior of carbon nanotubes under compression. Compos. Struct. 100, 323–331 (2013)

    Article  Google Scholar 

  34. R. Li, G.A. Kardomateas, Vibration characteristics of multiwalled carbon nanotubes embedded in elastic media by a nonlocal elastic shell model. J. Appl. Mech. 74, 1087–1094 (2007)

    Article  ADS  Google Scholar 

  35. R. Ansari, H. Rouhi, Analytical treatment of the free vibration of single-walled carbon nanotubes based on the nonlocal Flugge shell theory. ASME J. Eng. Mater. Technol. 134, 011008 (2012)

    Article  Google Scholar 

  36. M.J. Hao, X.M. Guo, Q. Wang, Small-scale effect on torsional buckling of multi-walled carbon nanotubes. Eur. J. Mech. A. Solids 29, 49–55 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  37. Y.G. Hu, K.M. Liew, Q. Wang, X.Q. He, B.I. Yakobson, Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes. J. Mech. Phys. Solids 56, 3475–3485 (2008)

    Article  ADS  MATH  Google Scholar 

  38. R. Ansari, H. Rouhi, S. Sahmani, Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics. Int. J. Mech. Sci. 53, 786–792 (2011)

    Article  Google Scholar 

  39. Q.G. Shu, P.Y. Shau, Axial vibration analysis of nanocones based on nonlocal elasticity theory. Acta. Mech. Sin. 28, 801–807 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. T.P. Chang, Small scale effect on axial vibration of nonuniform and non-homogeneous nanorods. Comput. Mater. Sci. 54, 23–27 (2012)

    Article  Google Scholar 

  41. R. Firouz-Abadi, M. Fotouhi, H. Haddadpour, Free vibration analysis of nanocones using a nonlocal continuum model. Phys. Lett., Sect. A: Gen., At. Solid State Phys. 375, 3593–3598 (2011)

    Article  Google Scholar 

  42. R. Firouz-Abadi, M. Fotouhi, H. Haddadpour, Stability analysis of nanocones under external pressure and axial compression using a nonlocal shell model. Phys. E 44, 1832–1837 (2012)

    Article  Google Scholar 

  43. M.M. Fotouhi, R.D. Firouz-Abadi, H. Haddadpour, Free vibration analysis of nanocones embedded in an elastic medium using a nonlocal continuum shell model. Int. J. Eng. Sci. 64, 14–22 (2013)

    Article  MathSciNet  Google Scholar 

  44. R. Ansari, H. Rouhi, A.N. Rad, Vibrational analysis of carbon nanocones under different boundary conditions: an analytical approach. Mech. Res. Commun. 56, 130–135 (2014)

    Article  Google Scholar 

  45. J. Fernández-Sáez, R. Zaera, J.A. Loya, J.N. Reddy, Bending of Euler–Bernoulli beams using Eringen’s integral formulation: a paradox resolved. Int. J. Eng. Sci. 99, 107–116 (2016)

    Article  Google Scholar 

  46. M. Tuna, M. Kirca, Exact solution of Eringen’s nonlocal integral model for bending of Euler–Bernoulli and Timoshenko beams. Int. J. Eng. Sci. 105, 80–92 (2016)

    Article  MathSciNet  Google Scholar 

  47. R. Ansari, J. Torabi, M.F. Shojaei, Vibrational analysis of functionally graded carbon nanotube-reinforced composite spherical shells resting on elastic foundation using the variational differential quadrature method. Eur. J. Mech.-A/Solids 60, 166–182 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  48. R. Ansari, J. Torabi, M.F. Shojaei, E. Hasrati, Buckling analysis of axially-loaded functionally graded carbon nanotube-reinforced composite conical panels using a novel numerical variational method. Compos. Struct. 157, 398–411 (2016)

    Article  Google Scholar 

  49. R. Ansari, J. Torabi, M.F. Shojaei, Buckling and vibration analysis of embedded functionally graded carbon nanotube-reinforced composite annular sector plates under thermal loading. Compos. Part B: Eng. 109, 197–213 (2016)

    Article  Google Scholar 

  50. C. Shu, Differential Quadrature and its Application in Engineering (Springer, London, 2000)

    Book  MATH  Google Scholar 

  51. F. Tornabene, E. Viola, D.J. Inman, 2-D differential quadrature solution for vibration analysis of functionally graded conical, cylindrical shell and annular plate structures. J. Sound Vib. 328, 259–290 (2009)

    Article  ADS  Google Scholar 

  52. R. Ansari, V. Mohammadi, M. Faghih Shojaei, R. Gholami, H. Rouhi, Nonlinear vibration analysis of Timoshenko nanobeams based on surface stress elasticity theory. Eur. J. Mech. A/Solids 45, 143–152 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  53. C.Y. Wei, D. Srivastava, Nanomechanics of carbon nanofibers: structural and elastic properties. Appl. Phys. Lett. 85, 2208–2210 (2004)

    Article  ADS  Google Scholar 

  54. J.X. Wei, K.M. Liew, X.Q. He, Mechanical properties of carbon nanocones. Appl. Phys. Lett. 91, 261906 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Reza Ansari or Jalal Torabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, R., Torabi, J. Numerical study on the free vibration of carbon nanocones resting on elastic foundation using nonlocal shell model. Appl. Phys. A 122, 1073 (2016). https://doi.org/10.1007/s00339-016-0602-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0602-x

Keywords

Navigation