Skip to main content
Log in

Durability of the tunable adhesive superhydrophobic PTFE surfaces for harsh environment applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Tunable adhesive superhydrophobic materials have attracted increasing research interest due to their applications in microdroplet manipulation, biological detection and microfluidic system. However, most of the artificial materials easily lose superhydrophobicity in harsh environments. The durability of superhydrophobic materials is very important to extend their lifetime in practical applications. In this paper, bioinspired durable superhydrophobicity with tunable adhesion on polytetrafluoroethylene surfaces is realized via a one-step femtosecond laser irradiation. On the laser-induced superhydrophobic surfaces, the sliding angle can be tuned from 1° to 90° (water droplet is pinned on the surface at any titled angles). The tunable water adhesion results from different contact states which change from the lotus state to the transition state and then to the composite state with increasing average distance of irradiation points. Water droplet quick localization and no-loss droplet transportation were achieved through designing surface adhesion. In addition, the resultant surfaces are so stable that they can maintain superhydrophobicity even after storing in harsh environments, without dramatical superhydrophobicity decay for a long time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Marmur, Langmuir 20, 3517–3519 (2011)

    Article  Google Scholar 

  2. V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S.H. Anastasiadis, C. Fotakis, Adv. Mater. 20, 4049–4054 (2008)

    Article  Google Scholar 

  3. L. Feng, Y. Zhang, J. Xi, Y. Zhu, N. Wang, F. Xia, L. Jiang, Langmuir 24, 4114–4119 (2008)

    Article  Google Scholar 

  4. X. Zhang, F. Shi, J. Niu, Y. Jiang, Z. Wang, J. Mater. Chem. 18, 621–633 (2008)

    Article  Google Scholar 

  5. W. Barthlott, C. Neinhuis, Planta 202, 1–8 (1997)

    Article  Google Scholar 

  6. T. Sun, G. Qing, Adv. Mater. 23, H57–H77 (2011)

    Article  Google Scholar 

  7. K. Liu, L. Jiang, Nano Today 6, 155–175 (2011)

    Article  Google Scholar 

  8. J. Genzer, K. Efimenko, Biofouling 22, 339–360 (2006)

    Article  Google Scholar 

  9. F. Shi, J. Niu, J. Liu, F. Liu, Z. Wang, X. Feng, X. Zhang, Adv. Mater. 19, 2257–2261 (2007)

    Article  Google Scholar 

  10. G. Ju, M. Cheng, M. Xiao, J. Xu, K. Pan, X. Wang, Y. Zhang, F. Shi, Adv. Mater. 25, 2915–2919 (2013)

    Article  Google Scholar 

  11. W. Song, D.D. Veiga, C.A. Custódio, J.F. Mano, Adv. Mater. 21, 1830–1834 (2009)

    Article  Google Scholar 

  12. X. Hong, X. Gao, L. Jiang, J. Am. Chem. Soc. 129, 1478–1479 (2007)

    Article  Google Scholar 

  13. N. Zhao, Q. Xie, X. Kuang, S. Wang, Y. Li, X. Lu, S. Tan, J. Shen, X. Zhang, Y. Zhang, J. Xu, C.C. Han, Adv. Funct. Mater. 17, 2739–2745 (2007)

    Article  Google Scholar 

  14. M.H. Jin, X.J. Feng, L. Feng, T.L. Sun, J. Zhai, T.J. Li, L. Jiang, Adv. Mater. 17, 1977–1981 (2005)

    Article  Google Scholar 

  15. D. Zhang, F. Chen, Q. Yang, J. Yong, H. Bian, Y. Ou, J. Si, X. Meng, X. Hou, A.C.S. Appl, Mater. Interfaces 4, 4905–4912 (2012)

    Article  Google Scholar 

  16. Z. Hu, X. Zhang, Z. Liu, K. Huo, P.K. Chu, J. Zhai, L. Jiang, Adv. Funct. Mater. 24, 6381–6388 (2014)

    Article  Google Scholar 

  17. M.K. Dawood, H. Zheng, T.H. Liew, K.C. Leong, Y.L. Foo, R. Rajagopalan, S.A. Khan, W.K. Choi, Langmuir 27, 4126–4133 (2011)

    Article  Google Scholar 

  18. L. Heng, X. Meng, B. Wang, L. Jiang, Langmuir 29, 9491–9498 (2013)

    Article  Google Scholar 

  19. B. Bhushan, Langmuir 28, 1698–1714 (2012)

    Article  Google Scholar 

  20. H. Shahsavan, D. Arunbabu, B. Zhao, Macromol. Mater. Eng. 297, 743–760 (2012)

    Article  Google Scholar 

  21. X. Mo, Y. Wu, J. Zhang, T. Hang, M. Li, Langmuir 31, 10850–10858 (2015)

    Article  Google Scholar 

  22. J. Long, P. Fan, D. Gong, D. Jiang, H. Zhang, L. Li, M. Zhong, A.C.S. Appl, Mater. Interfaces 7, 9858–9865 (2015)

    Article  Google Scholar 

  23. D. Wu, S. Wu, Q. Chen, Y. Zhang, J. Yao, X. Yao, L. Niu, J. Wang, L. Jiang, H. Sun, Adv. Mater. 23, 545–549 (2011)

    Article  Google Scholar 

  24. K.P. Adhi, R.L. Owings, T.A. Railkar, W.D. Brown, A.P. Malshe, Appl. Surf. Sci. 218, 17–23 (2003)

    Article  ADS  Google Scholar 

  25. S.K. Biswas, K. Vijayan, Wear 158, 193–211 (1992)

    Article  Google Scholar 

  26. J. Li, X. Liu, Y. Ye, H. Zhou, J. Chen, J. Phys. Chem. C 115, 4726–4729 (2011)

    Article  Google Scholar 

  27. Y. Li, E.J. Lee, S.O. Cho, J. Phys. Chem. C 111, 14813–14817 (2007)

    Article  Google Scholar 

  28. S.S. Chhatre, A. Tuteja, W. Choi, A. Revaux, D. Smith, J.M. Mabry, G.H. McKinley, R.E. Cohen, Langmuir 25, 13625–13632 (2009)

    Article  Google Scholar 

  29. J. Yong, F. Chen, Q. Yang, X. Hou, Soft Matter 11, 8897–8906 (2015)

    Article  ADS  Google Scholar 

  30. Z. Deng, F. Chen, Q. Yang, H. Bian, G. Du, J. Yong, C. Shan, X. Hou, Adv. Funct. Mater. 26, 1995–2001 (2016)

    Article  Google Scholar 

  31. J. Yong, F. Chen, Q. Yang, U. Farooq, X. Hou, J. Mater. Chem. A 3, 10703–10709 (2015)

    Article  Google Scholar 

  32. J. Yong, F. Chen, Q. Yang, G. Du, C. Shan, H. Bian, U. Farooq, X. Hou, J. Mater. Chem. A 3, 9379–9384 (2015)

    Article  Google Scholar 

  33. J. Yong, F. Chen, Q. Yang, Y. Fang, J. Huo, X. Hou, Chem. Commun. 51, 9813–9816 (2015)

    Article  Google Scholar 

  34. A.Y. Vorobyev, C. Guo, Appl. Phys. Lett. 92, 041914 (2008)

    Article  ADS  Google Scholar 

  35. F. Liang, J. Lehr, L. Danielczak, R. Leask, A. Kietzig, Int. J. Mol. Sci. 15, 13681–13696 (2014)

    Article  Google Scholar 

  36. S.F. Toosi, S. Moradi, S. Kamal, S.G. Hatzikiriakos, Appl. Surf. Sci. 349, 715–723 (2015)

    Article  Google Scholar 

  37. Z. Chu, S. Seeger, Chem. Soc. Rev. 43, 2784–2798 (2014)

    Article  Google Scholar 

  38. L. Wen, Y. Tian, L. Jiang, Angew. Chem. Int. Edit. 54, 3387–3399 (2015)

    Article  Google Scholar 

  39. Y.C. Jung, B. Bhushan, Langmuir 24, 6262–6269 (2008)

    Article  Google Scholar 

  40. Q.B. Zhang, D. Xu, T.F. Hung, K. Zhang, Nanotechnology 24, 065602 (2013)

    Article  ADS  Google Scholar 

  41. Y.C. Jung, B. Bhushan, Langmuir 25, 9208–9218 (2009)

    Article  Google Scholar 

  42. I.A. Larmour, S.E.J. Bell, G.C. Saunders, Angew. Chem. 119, 1740–1742 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China under the Grant Nos. 61275008, 51335008 and 61475124, the Special-Funded Program on National Key Scientific Instruments and Equipment Development of China under the Grant No. 2012YQ12004706, the Collaborative Innovation Center of Suzhou Nano Science and Technology and the International Joint Research Center for Micro/Nano Manufacturing and Measurement Technologies. The SEM work was done at International Center for Dielectric Research (ICDR), Xi’an Jiaotong University; we really appreciate Dai Yanzhu’s help for obtaining SEM images.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Chen or Hao Bian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Yong, J., Chen, F. et al. Durability of the tunable adhesive superhydrophobic PTFE surfaces for harsh environment applications. Appl. Phys. A 122, 827 (2016). https://doi.org/10.1007/s00339-016-0325-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0325-z

Keywords

Navigation