Skip to main content
Log in

Barium hexaferrite/graphene oxide: controlled synthesis and characterization and investigation of its magnetic properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present study, barium hexaferrite nanocrystals (BaFe12O19) were successfully synthesized through the two-step sol–gel method in an aqueous solution in the presence of barium nitrate and iron (III) nitrate. Besides, the effect of the molar ratio of graphene oxide on the particle size and magnetic properties of final product was investigated. In this research, glucose plays a role as capping and chelating agent in the synthesis of BaFe12O19/graphene oxide. Moreover, it was found that the size, morphology, and magnetic properties of the final products could be greatly influenced by the molar ratio of graphene oxide. BaFe12O19/graphene oxide was characterized by using X-ray diffraction, scanning electron microscope, Fourier transform infrared spectroscopy, vibrating sample magnetometer, and energy-dispersive spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Matsukura, Y. Tokura, H. Ohno, Control of magnetism by electric fields. Nat. Nanotechnol. 10, 209–220 (2015)

    Article  ADS  Google Scholar 

  2. A. Javidan, M. Ramezani, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, Synthesis, characterization, and magnetic property of monoferrite BaFe2O4 nanoparticles with aid of a novel precursor. J. Mater. Sci.: Mater. Electron. 26, 3813–3818 (2015)

    Google Scholar 

  3. M. Prezioso, A. Riminucci, P. Graziosi, I. Bergenti, R. Rakshit, R. Cecchini, A single-device universal logic gate based on a magnetically enhanced memristor. Adv. Mater. 25(4), 534–538 (2013)

    Article  Google Scholar 

  4. M. Fiebig, D. Th Lottermoser, A.V. Frohlich, R.V.Pisarev Goltsev, Observation of coupled magnetic and electric domains. Nature 419, 818–820 (2002)

    Article  ADS  Google Scholar 

  5. R. Sbiaa, R. Law, S.Y.H. Lua, E.L. Tan, T. Tahmasebi, C.C. Wang, S.N. Piramanayagam, Spin transfer torque switching for multi-bit per cell magnetic memory with perpendicular anisotropy. Appl. Phys. Lett. 99, 092506 (2011)

    Article  ADS  Google Scholar 

  6. N.A. Hill, J. Phys. Chem. B 104, 6694 (2000)

    Article  Google Scholar 

  7. N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, S.W. Cheong, Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392–395 (2004)

    Article  ADS  Google Scholar 

  8. N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, H. Kito, Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4. Nature 436, 1136–1138 (2005)

    Article  ADS  Google Scholar 

  9. H.J. Xiang, M.H. Whangbo, Charge order and the origin of giant magnetocapacitance in LuFe2O4. Phys. Rev. Lett. 98, 246403–246409 (2007)

    Article  ADS  Google Scholar 

  10. S. Ryu, J.Y. Kim, Y.H. Shin, B.G. Park, J.Y. Son, H.M. Jang, Enhanced magnetization and modulated orbital hybridization in epitaxially constrained BiFeO3 thin films with rhombohedral symmetry. Chem. Mater. 21, 5050–5057 (2009)

    Article  Google Scholar 

  11. M. Wang, G.L. Tan, Multiferroic properties of Pb2Fe2O5 ceramics. Mater. Res. Bull. 46, 438–441 (2011)

    Article  Google Scholar 

  12. G.L. Tan, M. Wang, Multiferroic PbFe12O19 ceramics. J. Electroceram. 26, 170–174 (2011)

    Article  Google Scholar 

  13. J. Hemberger, P. Lunkenheimer, R. Fichtl, H.A. Krug von nidda, V. Tsurkan, A. Loidl, Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr2S4. Nature 434, 364–367 (2005)

    Article  ADS  Google Scholar 

  14. N. Yang, H.B. Yang, J.J. Jia, X.F. Pang, Formation and magnetic properties of nanosized PbFe12O19 particles synthesized by citrate precursor technique. J. Alloys Compd. 438, 263–267 (2007)

    Article  Google Scholar 

  15. K.S. Martirosyana, E. Galstyan, S.M. Hossain, Y.J. Wang, D. Litvinov, Barium hexaferrite nanoparticles synthesis and magnetic properties. Mater. Sci. Eng., B 176, 8–13 (2011)

    Article  Google Scholar 

  16. S. Chaudhury, S.K. Rakshit, S.C. Parida, Z. Singh, K.D.S. Mudher, V. Venugopal, Studies on structural and thermo-chemical behavior of MFe12O19(s) (M = Sr, Ba and Pb) prepared by citrate–nitrate gel combustion method. J. Alloys Compd. 455, 25–30 (2008)

    Article  Google Scholar 

  17. S.E. Jacobo, L. Civale, M.A. Blesa, Evolution of the magnetic properties during the thermal treatment of barium hexaferrite precursors obtained by coprecipitation from barium ferrate(VI) solutions. J. Magn. Magn. Mater. 260, 37–41 (2003)

    Article  ADS  Google Scholar 

  18. H. Hsiang, R.Q. Yao, Hexagonal ferrite powder synthesis using chemical coprecipitation. Mater. Chem. Phys. 104, 1–4 (2007)

    Article  Google Scholar 

  19. J.Y. Kwak, C.S. Lee, D. Kim, Y. Kim, Characteristics of barium hexaferrite nanoparticles prepared by temperature-controlled chemical coprecipitation. J. Korean Chem. Soc. 56, 609–616 (2012)

    Article  Google Scholar 

  20. L. Rezlescu, E. Rezlescu, P.D. Popa, N. Rezlescu, Fine barium hexaferrite powder prepared by the crystallisation of glass. J. Magn. Magn. Mater. 193, 288–290 (1999)

    Article  ADS  Google Scholar 

  21. X. Liu, J. Wang, L.M. Gan, S.C. Ng, J. Ding, An ultrafine barium ferrite powder of high coercivity from water-in-oil microemulsion. J. Magn. Magn. Mater. 184, 344–354 (1998)

    Article  ADS  Google Scholar 

  22. V.K. Sankaranarayanan, D.C. Khan, Mechanism of the formation of nanoscale M-type barium hexaferrite in the citrate precursor method. J. Magn. Magn. Mater. 153, 337–346 (1996)

    Article  ADS  Google Scholar 

  23. D. Mishra, S. Anand, R.K. Panda, R.P. Das, Studies on characterization, microstructures and magnetic properties of nano-size barium hexa-ferrite prepared through a hydrothermal precipitation-calcination route. Mater. Chem. Phys. 86, 132–136 (2004)

    Article  Google Scholar 

  24. M. Ramezani, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, Synthesis, characterization, and morphological control of Na1/2Bi1/2Cu3Ti4O12 through modify sol-gel method. J. Mater. Sci.: Mater. Electron. 26, 4848–4853 (2015)

    Google Scholar 

  25. M. Ramezani, A. Davoodi, A. Malekizad, S.M. Hosseinpour-Mashkani, Synthesis and characterization of Fe2TiO5 nanoparticles through a sol-gel method and its photocatalyst applications. J. Mater. Sci.: Mater. Electron. 26, 3957–3962 (2015)

    Google Scholar 

  26. M. Behpour, M. Mehrzad, S.M. Hosseinpour-Mashkani, TiO2 thin film: preparation, characterization, and its photocatalytic degradation of basic yellow 28 dye. JNS 5, 183–187 (2015)

    Google Scholar 

  27. O. Vargas, A. Caballero, J. Morales, Enhanced electrochemical performance of maghemite/graphene. Electrochim. Acta 130, 551–558 (2014)

    Article  Google Scholar 

  28. S.M. Hosseinpour-Mashkani, M. Ramezani, A. Sobhani-Nasab, M. Esmaeili-Zare, Synthesis, characterization, and morphological control of CaCu3Ti4O12 through modify sol-gel method. J. Mater. Sci.: Mater. Electron. 26, 6086–6091 (2015)

    Google Scholar 

  29. M. Khatamifar, Z. Rashidi Ranjbar, S.J. Fatemi, Preparation of Deferasirox in nano-scale by ultrasonic irradiation and optimization the amount and reaction time parameters. Int. J. Nano Dimens. 6(4), 363–369 (2015)

    Google Scholar 

  30. E. Khosravifard, M. Salavati-Niasari, M. Dadkhah, G. Sodeifian, Synthesis and characterization of TiO2-CNTs nanocomposite and investigation of viscosity and thermal conductivity of a new nanofluid. JNS 2, 191–197 (2010)

    Google Scholar 

  31. P. Xu, X. Han, M. Wang, Synthesis and magnetic properties of BaFe12O19 hexaferrite nanoparticles by a reverse microemulsion technique. J. Phys. Chem. C 111, 5866–5870 (2007)

    Article  Google Scholar 

  32. Z. Durmus, A. Durmus, H. Kavas, Synthesis and characterization of structural and magnetic properties of graphene/hard ferrite nanocomposites as microwave-absorbing material. J. Mater. Sci. 50, 1201–1213 (2015)

    Article  ADS  Google Scholar 

  33. M. Drofenik, I. Ban, G. Ferk, D. Makovec, A. Znidarsic, Z. Jaglicic, D. Lisjak, The concept of a low-temperature synthesis for superparamagnetic BaFe12O19 particles. J. Am. Ceram. Soc. 93, 1602–1607 (2010)

    Google Scholar 

  34. G. Tan, X. Chen, Structure and multiferroic properties of barium hexaferrite ceramics. J. Magn. Magn. Mater. 327, 87–90 (2013)

    Article  ADS  Google Scholar 

  35. J.C. Faloh, S.D. Castan˜o´n, N.S. Almodovar, Activation volume and coercivity in aluminum-substituted Pb–M hexaferrites. J. Magn. Magn. Mater. 222, 271–276 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Islamic Azad University of Arak for supporting this work by Grant Number 23432.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mostafa Hosseinpour-Mashkani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maddahfar, M., Ramezani, M. & Mostafa Hosseinpour-Mashkani, S. Barium hexaferrite/graphene oxide: controlled synthesis and characterization and investigation of its magnetic properties. Appl. Phys. A 122, 752 (2016). https://doi.org/10.1007/s00339-016-0283-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0283-5

Keywords

Navigation