Skip to main content
Log in

On the origin of contact resistances in graphene devices fabricated by optical lithography

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The contact resistance is a key bottleneck limiting the performance of graphene-based electronic and optoelectronic devices. Using a combined approach of atomic force microscopy patterning, Kelvin probe force microscopy and micro-Raman mapping, we study the influence of optical lithography resists on the contact resistance in graphene devices. We find that devices fabricated by optical lithography show a significantly larger contact resistance compared to devices produced by electron beam lithography using polymethylmethacrylate as resist. This difference is attributed to a 3–4-nm-thick residual layer remaining in between the contact metal and the graphene after optical lithography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. F. Schwierz, Proc. IEEE 101, 1567 (2013)

    Article  Google Scholar 

  2. F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Nat. Photon. 4, 611 (2010)

    Article  ADS  Google Scholar 

  3. K.S. Novoselov, V.I. Fal‘ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, Nature 490, 192 (2012)

    Article  ADS  Google Scholar 

  4. Y.-M. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H.-Y. Chiu, A. Grill, Ph Avouris, Science 327, 662 (2010)

    Article  ADS  Google Scholar 

  5. D. Schall, M. Otto, D. Neumaier, H. Kurz, Sci. Rep. 3, 2592 (2013)

    Article  ADS  Google Scholar 

  6. J.A. Robinson, M. LaBella, M. Zhu, M. Hollander, R. Kasarda, Z. Hughes, K. Trumbull, R. Cavalero, D. Snyder, Appl. Phys. Lett. 98, 053103 (2011)

    Article  ADS  Google Scholar 

  7. M.T. Ghoneim, C.E. Smith, M.M. Hussain, Appl. Phys. Lett. 103, 183115 (2013)

    Article  ADS  Google Scholar 

  8. A. Nath, A.D. Koehler, G.G. Jernigan, V.D. Wheeler, J.K. Hite, S.C. Hernández, Z.R. Robinson, M.Y. Garces, R.L. Myers-Ward, C.R. Eddy Jr, D.K. Gaskill, M.V. Rao, Appl. Phys. Lett. 104, 224102 (2014)

    Article  ADS  Google Scholar 

  9. A. Hsu, H. Wang, K.K. Kim, J. Kong, T. Palacios, IEEE Electron Dev. Lett. 32, 1008 (2011)

    Article  ADS  Google Scholar 

  10. A. Venugopal, L. Colombo, E.M. Vogel, Appl. Phys. Lett. 96, 013512 (2010)

    Article  ADS  Google Scholar 

  11. B. Huang, M. Zhang, Y. Wang, J. Woo, Appl. Phys. Lett. 99, 032107 (2011)

    Article  ADS  Google Scholar 

  12. W. Li, C.A. Hacker, G. Cheng, Y. Liang, B. Tian, A.R.H. Walker, C.A. Richter, D.J. Gundlach, X. Liang, L. Peng, J. Appl. Phys. 115, 114304 (2014)

    Article  ADS  Google Scholar 

  13. W.S. Leong, C.T. Nai, J.T.L. Thong, Nano Lett. 14, 3840 (2014)

    Article  ADS  Google Scholar 

  14. W. Li, Y. Liang, D. Yu, L. Peng, K.P. Pernstich, T. Shen, A.R.H. Walker, G. Cheng, C.A. Hacker, C.A. Richter, Q. Li, D.J. Gundlach, X. Liang, Appl. Phys. Lett. 102, 183110 (2013)

    Article  ADS  Google Scholar 

  15. Y. Dan, Y. Lu, N.J. Kybert, Z. Luo, A.T.C. Johnson, Nano Lett. 9, 1472 (2009)

    Article  ADS  Google Scholar 

  16. Z. Cheng, Q. Zhou, C. Wang, Q. Li, C. Wang, Y. Fang, Nano Lett. 11, 767 (2011)

    Article  ADS  Google Scholar 

  17. M. Ishigami, J.H. Chen, W.G. Cullen, M.S. Fuhrer, E.D. Williams, Nano Lett. 7, 1643 (2007)

    Article  ADS  Google Scholar 

  18. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo, R.S. Ruoff, Nano Lett. 9, 4359 (2009)

    Article  ADS  Google Scholar 

  19. C. Casiraghi, Phys. Rev. B 80, 233407 (2009)

    Article  ADS  Google Scholar 

  20. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha, U.V. Waghmare, K.S. Novoselov, H.R. Krishnamurthy, A.K. Geim, A.C. Ferrari, A.K. Sood, Nat. Nanotechnol. 3, 210 (2008)

    Article  Google Scholar 

  21. C. Casiraghi, S. Pisana, K.S. Novoselov, A.K. Geim, A.C. Ferrari, Appl. Phys. Lett. 91, 233108 (2007)

    Article  ADS  Google Scholar 

  22. S. Pisana, M. Lazzeri, C. Casiraghi, K.S. Novoselov, A.K. Geim, A.C. Ferrari, F. Mauri, Nat. Mater. 6, 198 (2007)

    Article  ADS  Google Scholar 

  23. N.J. Lee, J.W. Yoo, Y.J. Choi, C.J. Kang, D.Y. Jeon, D.C. Kim, S. Seo, H.J. Chung, Appl. Phys. Lett. 95, 222107 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work has been funded by the German Research Foundation (DFG) in the frame of the SPP 1459 “Graphene” under contract ME 1173/4-1 and NE 1633/2-1. The work of C.A.C. was supported by the National Council on Science and Technology (CONACYT), Mexico, under Grant No. 252826.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Mertin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chavarin, C.A., Sagade, A.A., Neumaier, D. et al. On the origin of contact resistances in graphene devices fabricated by optical lithography. Appl. Phys. A 122, 58 (2016). https://doi.org/10.1007/s00339-015-9582-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-015-9582-5

Keywords

Navigation