Skip to main content
Log in

Monopole antenna with metamaterials to reduce the exposure

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper presents a simplified model of a terminal mobile where a monopole antenna is associated with three different metamaterials: artificial magnetic conductor (AMC), electromagnetic band gap and resistive high-impedance surface (RHIS). The objective is to evaluate what is the metamaterial which is the best solution to reduce exposure. The exposure has been evaluated using a simplified phantom model. Results show that both AMC and RHIS reduce the exposure preserving the antenna performances. A reduction of 23 % of specific absorption rate 10 g has been obtained when the monopole is associated with an optimized RHIS structure. Antenna with and without metamaterials has been realized. The experimental results confirm the performances given by simulation in terms of impedance matching and radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. O. Kivekas, J. Ollikainen, T. Lehtiniemi, P. Vainikainen, Bandwidth, SAR, and efficiency of internal mobile phone antennas. Electromagn. Compat. IEEE Trans. 46(1), 71–86 (2004)

    Article  Google Scholar 

  2. H. Kusuma, A.-F. Sheta, I.M. Elshafiey, Z. Siddiqui, M.A.S. Alkanhal, S. Aldosari, S.A. Alshebeili, S.F. Mahmoud, A new low SAR antenna structure for wireless handset applications. Prog. Electromagn. Res. 112, 23–40 (2011)

    Article  Google Scholar 

  3. M.I. Kitra, C.J. Panagamuwa, P. McEvoy, J.C. Vardaxoglou, J.R. James, Low SAR Ferrite Handset Antenna Design. IEEE Trans. Antennas Propag. 55(4), 1155–1164 (2007)

    Article  ADS  Google Scholar 

  4. R. Ikeuchi, A. Hirata, Dipole Antenna Above EBG Substrate for Local SAR Reduction. IEEE Antennas Wirel. Propag. Lett. 10, 904–906 (2011)

    Article  ADS  Google Scholar 

  5. J.N. Hwang, F.C. Chen, Reduction of the Peak SAR in the Human Head With Metamaterials. IEEE Trans. Antennas Propag. 54(12), 3763–3770 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  6. R. Ikeuchi, K.H. Chan, A. Hirata, SAR and radiation characteristics of a dipole antenna above different finite EBG Substrates in the presence of a realistic head model in the 3.5 GHz band. Prog. Electromagn. Res. B 44, 53–70 (2012)

    Article  Google Scholar 

  7. S. Lee, N. Kim, S.Y. Rhee, Design of Novel Artificial Magnetic Conductor Reflector and Its SAR Analysis, in Progress In Electromagnetics Research Symposium Proceedings (Moscow, Russia, 2012) pp. 325–328

  8. S.I. Kwak, D.U. Sim, J.H. Kwon, H.D Choi, Experimental tests of SAR reduction on mobile phone using EBG structures, Electron. Lett. 44(9), 568–569 (2008)

    Article  Google Scholar 

  9. S.I. Kwak, D.U. Sim, J.H. Kwon, Design of optimized multilayer PIFA with the EBG structure for SAR reduction in mobile applications. Electromagn. Compat. IEEE Trans. 53(2), 325–331 (2011)

    Article  Google Scholar 

  10. H.-N. Lin, K.-W. Lin, S.-C. Chen, Use of Frequency Selective Surface to Prevent SAR and Improve Antenna Performance of Cellular Phones, in Progress In Electromagnetics Research Symposium Proceedings (Suzhou, China, 2011) pp. 214–218

  11. J. Wiart, E. Conil, Y. Toutain, S. Bories, M. Tesanovic, Y. Lostanlen, L.M. Correia, Low Exposure Network, in Proceedings of BioEM’2013 (Thessaloniki, Greece, 2013)

  12. F. Linot, X. Begaud, M. Soiron, C. Renard, M. Labeyrie, Characterisation of a loaded high impedance surface. Int. J. Microw. Wirel. Technol. 1, 483–487 (2009)

    Article  Google Scholar 

  13. A. C. Lepage, X. Begaud, J. Sarrazin, Wideband directive antennas with High Impedance Surfaces, in Microwave and Millimeter Wave Circuits and Systems: Emerging Design, Technologies and Applications ed. by A. Georgiadis, H. Rogier, L. Roselli and P. Arcioni (Wiley, 2012)

  14. M. Grelier, F. Linot, A.C. Lepage, X. Begaud, J.M. Le Mener, M. Soiron, Analytical methods for AMC and EBG characterisations. Appl. Phys. A 103(3), 805–808 (2011)

    Article  ADS  Google Scholar 

  15. Y. Pinto, J. Sarrazin, A.-C. Lepage, X. Begaud, N. Capet, Resistive high-impedance surfaces (RHIS) as absorbers for oblique incidence electromagnetic waves. Appl. Phys. A 117(2), 693–697 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh Framework Program (FP7/2007-2013) under grant agreement LEXNET (Low EMF Exposure Future Networks) No. 318273.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Begaud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinto, Y., Begaud, X. Monopole antenna with metamaterials to reduce the exposure. Appl. Phys. A 120, 917–925 (2015). https://doi.org/10.1007/s00339-015-9230-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9230-0

Keywords

Navigation