Skip to main content
Log in

PEG-assisted hydrothermal synthesis of BiOCl with enhanced photocatalytic performance

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

BiOCl photocatalyst with enhanced photocatalytic performance was prepared by a hydrothermal routine with the assistance of polyethylene glycol 6000 (PEG 6000). The specific surface parameters, the crystal structure, the morphology, the distribution of particle size, the chemical states, and the photo-induced charge separation rate of the photocatalyst prepared (PEG-BiOCl) were characterized by Brunauer–Emmett–Teller method, X-ray diffraction, scanning electron microscopy, particle size analyzer, X-ray photoelectron spectroscopy, and surface photovoltage spectroscopy, respectively. Adding PEG 6000 into the synthesis system greatly changes the specific area parameters of BiOCl, decreases the particle size, and enhances the photo-induced charge separation rate and hydroxyl content. The superoxide radical is the main active species during the photocatalytic process. The photocatalytic activity of PEG-BiOCl for decolorization of methyl orange aqueous solution under both ultraviolet light and simulated solar light irradiation was investigated. The results show that PEG-BiOCl exhibits higher photocatalytic performance than that of the reference BiOCl, and the possible mechanism was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. P. Ye, J.J. Xie, Y.M. He, L. Zhang, T.H. Wu, Y. Wu, Mater. Lett. 108, 168–171 (2013)

    Article  Google Scholar 

  2. J.Y. Xiong, Z.B. Jiao, G.X. Lu, W. Ren, J.H. Ye, Y.P. Bi, Chem. Eur. J. 19, 9472–9475 (2013)

    Article  Google Scholar 

  3. G. Chen, G.L. Fang, G.D. Tang, Mater. Res. Bull. 48, 1256–1261 (2013)

    Article  Google Scholar 

  4. J. Jiang, K. Zhao, X.Y. Xiao, L.Z. Zhang, J. Am. Chem. Soc. 134, 4473–4476 (2012)

    Article  Google Scholar 

  5. Z. Deng, D. Chen, B. Peng, F. Tang, Cryst. Growth Des. 8, 2995–3003 (2008)

    Article  Google Scholar 

  6. V.J. Babu, R.S.R. Bhavatharini, S. Ramakrishna, RSC Adv. 4, 29957–29963 (2014)

    Article  Google Scholar 

  7. X.C. Zhang, X.X. Liu, C.M. Fan, Y.W. Wang, Y.F. Wang, Z.H. Liang, Appl. Catal. B Environ. 132–133, 332–341 (2013)

    Article  Google Scholar 

  8. Y.R. Jiang, H.P. Lin, W.H. Chung, Y.M. Dai, W.Y. Lin, C.C. Chena, J. Hazard. Mater. 283, 787–805 (2015)

    Article  Google Scholar 

  9. H.L. Chen, W.W. Lee, W.H. Chung, H.P. Lin, Y.J. Chen, Y.R. Jiang, W.Y. Lin, C.C. Chen, J. Taiwan Inst. Chem. E. 45, 1892–1909 (2014)

    Article  Google Scholar 

  10. F.D. Gao, D.W. Zeng, Q.W. Huang, S.Q. Tian, C.S. Xie, Phys. Chem. Chem. Phys. 14, 10572–10578 (2012)

    Article  Google Scholar 

  11. J.Y. Xiong, G. Cheng, F. Qin, R.M. Wang, H.Z. Sun, R. Chen, Chem. Eng. J. 220, 228–236 (2013)

    Article  Google Scholar 

  12. B. Pare, B. Sarwan, S.B. Jonnalagadda, Appl. Surf. Sci. 258, 247–253 (2011)

    Article  ADS  Google Scholar 

  13. Y.Y. Liu, W.J. Son, J.B. Lu, B.B. Huang, Y. Dai, M.H. Whangbo, Chem. Eur. J. 17, 9342–9349 (2011)

    Article  Google Scholar 

  14. J.X. Xia, L. Xu, J. Zhang, S. Yin, H.M. Li, H. Xu, Jun Di, J. Di. Cryst. Eng. Commun. 15, 10132–10141 (2013)

    Article  Google Scholar 

  15. K.L. Li, W.W. Lee, C.S. Lu, Y.M. Dai, S.Y. Chou, H.L. Chen, H.P. Lin, C.C. Chen, J. Taiwan Inst. Chem. E 45, 2688–2697 (2014)

    Article  Google Scholar 

  16. V. Donchev, K. Kirilov, T. Ivanov, K. Germanova, Mater. Sci. Eng., B 129, 186–192 (2006)

    Article  Google Scholar 

  17. Y.H. Lin, D.J. Wang, Q.D. Zhao, M. Yang, Q.L. Zhang, J. Phys. Chem. B 108, 3202–3206 (2004)

    Article  Google Scholar 

  18. G. Li, K. Wong, X. Zhang, C. Hu, J. Yu, R. Chan, P. Wong, Chemosphere 76, 1185–1191 (2009)

    Article  Google Scholar 

  19. J. Cao, B. Xu, B. Luo, H. Lin, S. Chen, Catal. Commun. 2011, 63–68 (2011)

    Article  Google Scholar 

  20. J. Zhong, D. Ma, X. He, J. Li, Y. Chen, J. Sol-Gel. Sci. Technol. 52, 140–145 (2009)

    Article  Google Scholar 

  21. G.P. Dai, J.G. Yu, G. Liu, J. Phys. Chem. C 115, 7339–7346 (2011)

    Article  Google Scholar 

  22. L.Q. Ye, L.H. Tian, T.Y. Peng, L. Zan, J. Mater. Chem. 21, 12479–12484 (2011)

    Article  Google Scholar 

  23. S.J. Peng, L.L. Li, P.N. Zhu, Y.Z. Wu, M. Srinivasan, S.G. Mhaisalkar, S. Ramakrishna, Q.Y. Yan, Chem. Asian J. 2013(8), 258–268 (2013)

    Article  Google Scholar 

  24. W.X. Zhao, X.T. Wang, H.X. Sang, K. Wang, Chin. J. Chem. 31, 415–420 (2013)

    Article  Google Scholar 

  25. H. Xu, L.Z. Zhang, J. Phys. Chem. C 114, 11534–11541 (2010)

    Article  Google Scholar 

  26. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69–96 (1995)

    Article  Google Scholar 

  27. L.Q. Jing, J. Wang, Y. Qu, Y. Luan, Appl. Surf. Sci. 256, 657–663 (2009)

    Article  ADS  Google Scholar 

  28. S.T. Huang, Y.R. Jiang, S.Y. Chou, Y.M. Dai, CCh. Chen, J. Mol. Catal. A Chem. 391, 105–120 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported financially by the Research Fund Projects of Sichuan University of Science and Engineering (No. 2013PY03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junbo Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhong, J., Li, J. et al. PEG-assisted hydrothermal synthesis of BiOCl with enhanced photocatalytic performance. Appl. Phys. A 119, 1203–1208 (2015). https://doi.org/10.1007/s00339-015-9181-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9181-5

Keywords

Navigation