Skip to main content
Log in

The role of defects in the tensile properties of silicene

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Effects of vacancies and Stone–Wales defects on the mechanical properties of silicene are investigated through molecular dynamic finite element method with Tersoff potential. Young’s modulus, Poisson’s ratio and uniaxial tensile stress–strain curves are considered in the armchair and zigzag directions. It is found that pristine and lowly defective silicene sheets exhibit almost the same elastic nature up to fracture points. However, a single defect weakens significantly the silicene sheet, resulting in a considerable reduction in the fracture strength. One 2-atom vacancy in the sheet’s center reduces 18–20 % in fracture stress and 33–35 % in fracture strain. The weakening effects of Stone–Wales defects vary with the tensile direction and the orientation of these defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Takeda, K. Shiraishi, Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys. Rev. B 50, 14916 (1994)

    Article  ADS  Google Scholar 

  2. G.G. Guzman-Verri, L.C.L.Y. Voon, Electronic structure of silicon-based nanostructures. Phys. Rev. B 76, 075131 (2007)

    Article  ADS  Google Scholar 

  3. S. Cahangirov, M. Topsakal, E. Akturk, H. Sahin, S. Ciraci, Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 102, 236804 (2009)

    Article  ADS  Google Scholar 

  4. H. Sahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R.T. Senger, S. Ciraci, Monolayer honeycomb structures of group-IV elements and III–V binary compounds: first-principles calculations. Phys. Rev. B 80, 155453 (2009)

    Article  ADS  Google Scholar 

  5. B. Aufray, A. Kara, S. Vizzini, H. Oughaddou, C. Léandri, B. Ealet, G.L. Lay, Graphene-like silicon nanoribbons on Ag (110): a possible formation of silicene. Appl. Phys. Lett. 96, 183102 (2010)

    Article  ADS  Google Scholar 

  6. P.D. Padova, C. Quaresima, C. Ottaviani, P.M. Sheverdyaeva, P. Moras, C. Carbone, D. Topwal, B. Olivieri, A. Kara, H. Oughaddou, B. Aufray, G.L. Lay, Evidence of graphene-like electronic signature in silicene nanoribbons. Appl. Phys. Lett. 96, 261905 (2010)

    Article  ADS  Google Scholar 

  7. P.D. Padova, O. Kubo, B. Olivieri, C. Quaresima, T. Nakayama, M. Aono, G.L. Lay, Multilayer silicene nanoribbons. Nano Lett. 12, 5500 (2012)

    Article  ADS  Google Scholar 

  8. B. Feng, Z. Ding, S. Meng, Y. Yao, X. He, P. Cheng, L. Chen, K. Wu, Evidence of silicene in honeycomb structures of silicon on Ag (111). Nano Lett. 12, 3507 (2012)

    Article  ADS  Google Scholar 

  9. L. Meng, Y. Wang, L. Zhang, S. Du, R. Wu, L. Li, Y. Zhang, G. Li, H. Zhou, W.A. Hofer, H.J. Gao, Buckled silicene formation on Ir (111). Nano Lett. 13(2), 685 (2013)

    Article  ADS  Google Scholar 

  10. A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, Y. Yamada-Takamura, Experimental Evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett. 108, 245501 (2012)

    Article  ADS  Google Scholar 

  11. S. Lebègue, O. Eriksson, Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B 79, 115409 (2009)

    Article  ADS  Google Scholar 

  12. A. Kara, H. Enriquez, A.P. Seitsonen, L.C.L.Y. Voone, S. Vizzini, B. Aufray, H. Oughaddou, A review on silicene: new candidate for electronics. Surf. Sci. Rep. 67, 1 (2012)

    Article  ADS  Google Scholar 

  13. Z. Ni, Q. Liu, K. Tang, J. Zheng, J. Zhou, R. Qin, Z. Gao, D. Yu, J. Lu, Tunable band gap in silicene and germanene. Nano Lett. 12, 113 (2012)

    Article  ADS  Google Scholar 

  14. N.D. Drummond, V. Zolyomi, V.I. Falko, Electrically tunable band gap in silicene. Phys. Rev. B 85, 075423 (2012)

    Article  ADS  Google Scholar 

  15. W.F. Tsai, C.Y. Huang, T.R. Chang, H. Lin, H.T. Jeng, A. Bansil, Gated silicene as a tunable source of nearly 100 % spin-polarized electrons. Nat. Commun. 4(1500), 1 (2013)

    Google Scholar 

  16. D. Jose, A. Datta, Structures and chemical properties of silicene: unlike graphene. Acc. Chem. Res. 47(2), 593 (2014)

    Article  Google Scholar 

  17. Y.L. Song, Y. Zhang, J.M. Zhang, D.B. Lu, K.W. Xu, First-principles study of the structural and electronic properties of armchair silicene nanoribbons with vacancies. J. Mol. Struct. 990, 75 (2011)

    Article  ADS  Google Scholar 

  18. V.O. Ozcelik, H.H. Gure, S. Ciraci, Self-healing of vacancy defects in single-layer graphene and silicene. Phys. Rev. B 88, 045440 (2013)

    Article  ADS  Google Scholar 

  19. H. Sahin, J. Sivek, S. Li, B. Partoens, F.M. Peeters, Stone–wales defects in silicene: formation, stability, and reactivity of defect sites. Phys. Rev. B 88, 045434 (2013)

    Article  ADS  Google Scholar 

  20. A. Manjanath, A.K. Singh, Low formation energy and kinetic barrier of stone–wales defect in infinite and finite silicene. Chem. Phys. Lett. 592, 52 (2014)

    Article  ADS  Google Scholar 

  21. H.P. Li, R.Q. Zhang, Vacancy-defect–induced diminution of thermal conductivity in silicene. Europhys. Lett. 99, 36001 (2012)

    Article  ADS  Google Scholar 

  22. G.R. Berdiyorov, F.M. Peeters, Influence of vacancy defects on the thermal stability of silicene: a reactive molecular dynamics study. RSC Adv. 4, 1133 (2014)

    Article  Google Scholar 

  23. M. Topsakal, S. Ciraci, Elastic and plastic deformation of graphene, silicene, and boron nitride honeycomb nanoribbons under uniaxial tension: a first-principles density-functional theory study. Phys. Rev. B 81, 024107 (2010)

    Article  ADS  Google Scholar 

  24. R. Qin, C.H. Wang, W. Zhu, Y. Zhang, First-principles calculations of mechanical and electronic properties of silicene under strain. AIP Adv. 2, 022159 (2012)

    Article  ADS  Google Scholar 

  25. H. Zhao, Strain and chirality effects on the mechanical and electronic properties of silicene and silicane under uniaxial tension. Phys. Lett. A 376, 3546 (2012)

    Article  ADS  Google Scholar 

  26. Q. Peng, X. Wen, S. De, Mechanical stabilities of silicene. RSC Adv. 3, 13772 (2013)

    Article  Google Scholar 

  27. Y. Jing, Y. Sun, H. Niu, J. Shen, Atomistic simulations on the mechanical properties of silicene nanoribbons under uniaxial tension. Phys. Status Solidi B 250(8), 1505 (2013)

    Article  ADS  Google Scholar 

  28. R. Ansari, S. Rouhi, S. Ajori, Elastic properties and large deformation of two-dimensional silicene nanosheets using molecular dynamics. Superlattices Microstruct. 65, 64 (2014)

    Article  ADS  Google Scholar 

  29. Q.X. Pei, Z.D. Sha, Y.Y. Zhang, Y.W. Zhang, Effects of temperature and strain rate on the mechanical properties of silicene. J. Appl. Phys. 115, 023519 (2014)

    Article  ADS  Google Scholar 

  30. R.E. Roman, S.W. Cranford, Mechanical properties of silicene. Comput. Mater. Sci. 82, 50 (2014)

    Article  Google Scholar 

  31. M.Q. Le, D.T. Nguyen, Atomistic simulations of pristine and defective hexagonal BN and SiC sheets under uniaxial tension. Mater. Sci. Eng. A 615, 481 (2014)

    Article  Google Scholar 

  32. J. Tersoff, Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys. Rev. B 39(8), 5566 (1989)

    Article  ADS  Google Scholar 

  33. T. Belytschko, S.P. Xiao, G.C. Schatz, R.S. Ruoff, Atomistic simulations of nanotube fracture. Phys. Rev. B 65, 235430 (2002)

    Article  ADS  Google Scholar 

  34. O.A. Shenderova, D.W. Brenner, A. Omeltchenko, X. Su, L.H. Yang, Atomistic modeling of the fracture of polycrystalline diamond. Phys. Rev. B 61, 3877 (2000)

    Article  ADS  Google Scholar 

  35. M. Sammalkorpi, A. Krasheninnikov, A. Kuronen, K. Nordlund, K. Kaski, Mechanical properties of carbon nanotubes with vacancies and related defects. Phys. Rev. B 70, 245416 (2004)

    Article  ADS  Google Scholar 

  36. B.W. Jeong, J.K. Lim, S.B. Sinnotta, Tensile mechanical behavior of hollow and filled carbon nanotubes under tension or combined tension–torsion. Appl. Phys. Lett. 90, 023102 (2007)

    Article  ADS  Google Scholar 

  37. H.U. Jäger, K. Albe, Molecular-dynamics simulations of steady-state growth of ion-deposited tetrahedral amorphous carbon films. J. Appl. Phys. 88, 1129 (2000)

    Article  ADS  Google Scholar 

  38. M. Huhtala, A.V. Krasheninnikov, J. Aittoniemi, S.J. Stuart, K. Nordlund, K. Kaski, Improved mechanical load transfer between shells of multiwalled carbon nanotubes. Phys. Rev. B 70, 045404 (2004)

    Article  ADS  Google Scholar 

  39. D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter. 14, 783–802 (2002)

    Article  ADS  Google Scholar 

  40. D. Troya, S.L. Mielke, G.C. Schatz, Carbon nanotube fracture: differences between quantum mechanical mechanisms and those of empirical potentials. Chem. Phys. Lett. 382, 133 (2003)

    Article  ADS  Google Scholar 

  41. S. Zhang, S.L. Mielke, R. Khare, D. Troya, R.S. Ruoff, G.C. Schatz, T. Belytschko, Mechanics of defects in carbon nanotubes: atomistic and multiscale simulations. Phys. Rev. B 71, 115403 (2005)

    Article  ADS  Google Scholar 

  42. R. Khare, S.L. Mielke, J.T. Paci, S. Zhang, R. Ballarini, G.C. Schatz, T. Belytschko, Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets. Phys. Rev. B 75, 075412 (2007)

    Article  ADS  Google Scholar 

  43. B. Liu, Y. Huang, H. Jiang, S. Qu, K.C. Hwang, The atomic-scale finite element method. Comput. Methods Appl. Mech. Eng. 193, 1849 (2004)

    Article  ADS  MATH  Google Scholar 

  44. L. Nasdala, G. Ernst, Development of a 4-node finite element for the computation of nano-structured materials. Comput. Mater. Sci. 33, 443 (2005)

    Article  Google Scholar 

  45. Y. Wang, C. Zhang, E. Zhou, C. Sun, J. Hinkley, T.S. Gates, J. Su, Atomistic finite elements applicable to solid polymers. Comput. Mater. Sci. 36, 292 (2006)

    Article  Google Scholar 

  46. J. Wackerfuß, Molecular mechanics in the context of the finite element method. Int. J. Numer. Methods. Eng. 77, 969 (2009)

    Article  MATH  Google Scholar 

  47. L. Nasdala, A. Kempe, R. Rolfes, The molecular dynamic finite element method. Comput. Mater. Contin. 19(1), 57 (2010)

    Google Scholar 

  48. S.C. Chowdhury, B.Z. Haque, J.W. Gillespie, D.R. Hartman, Molecular simulations of pristine and defective carbon nanotubes under monotonic and combined loading. Comput. Mater. Sci. 65, 133 (2012)

    Article  Google Scholar 

  49. L. Xu, N. Wei, Y. Zheng, Mechanical properties of highly defective graphene: from brittle rupture to ductile fracture. Nanotechnology 24, 505703 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under the Grant No. 107.02-2014.03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minh-Quy Le.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, MQ., Nguyen, DT. The role of defects in the tensile properties of silicene. Appl. Phys. A 118, 1437–1445 (2015). https://doi.org/10.1007/s00339-014-8904-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8904-3

Keywords

Navigation