Skip to main content
Log in

Comparison of silver nanoparticles confined in nanoporous silica prepared by chemical synthesis and by ultra-short pulsed laser ablation in liquid

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Hexagonally ordered mesoporous silica materials, MCM-41 and SBA-15, have been synthesized and loaded with Ag nanoparticles, utilizing both chemical synthesis and ultra-short pulsed laser ablation in liquid. In laser ablation, a silver target, immersed in aqueous suspension of ordered mesoporous silica SBA-15, was irradiated by ultra-short laser pulses to generate silver nanoparticles. For comparison, samples of similar silver contents were prepared either by incorporating silver into the SBA-15 during a hydrothermal synthesis or by introducing silver in MCM-41 by template ion-exchange. Samples were characterized by XRD, N2 physisorption, TEM and UV–vis spectroscopy. All preparations contained significant amount of 5–50 nm size silver agglomerates on the outer surface of the silica particles. The laser ablation process did not cause significant destruction of the SBA-15 structure and metallic silver (Ag0) nanoparticles were mainly generated. It is demonstrated that by laser ablation in aqueous silica suspension smaller and more uniform metallic silver particles can be produced and loaded on the surface of the silica support than by synthesis procedures. Catalytic properties of the samples have been tested in the total oxidation of toluene. Because of its favorable Ag dispersity, the Ag/SBA-15 catalyst, generated by the laser ablation method, had better catalytic stability and, relative to its Ag load, higher activity than the conventional Ag/SBA-15 preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. De Bonis, A. Galasso, N. Ibris, A. Laurita, A. Santagata, R. Teghil, Appl. Surf. Sci. 268, 571–578 (2013)

    Article  ADS  Google Scholar 

  2. A. De Giacomo, A. De Bonis, M. dell’Aglio, O. De Pascale, R. Gaudiuso, S. Orlando, A. Santagata, G.S. Senesi, F. Taccogna, R. Teghil, J. Phys. Chem. C 115, 5123–5130 (2011)

    Article  Google Scholar 

  3. A. Santagata, A. De Bonis, A. De Giacomo, M. dell’Aglio, A. Laurita, G.S. Senesi, R. Gaudiuso, S. Orlando, R. Teghil, G.P. Parisi, J. Phys. Chem. C 115, 5160–5164 (2011)

    Article  Google Scholar 

  4. K. Sasaki, N. Takada, Pure Appl. Chem. 82, 1317–1327 (2010)

    Article  Google Scholar 

  5. F. Mafune, J. Kohno, Y. Takeda, T. Kondow, H. Sawabe, J. Phys. Chem. B 104, 8333–8337 (2000)

    Article  Google Scholar 

  6. F. Mafune, J. Kohno, Y. Takeda, T. Kondow, H. Sawabe, J. Phys. Chem. B 104, 9111–9117 (2000)

    Article  Google Scholar 

  7. F. Mafune, J. Kohno, Y. Takeda, T. Kondow, H. Sawabe, J. Phys. Chem. B 105, 5114–5120 (2001)

    Article  Google Scholar 

  8. A. Henglein, J. Phys. Chem. 97, 5457–5471 (1993)

    Article  Google Scholar 

  9. M.S. Yeh, Y.S. Yang, Y.P. Lee, H.F. Lee, Y.H. Yeh, C.S. Yeh, J. Phys. Chem. B 103, 6851–6857 (1999)

    Article  Google Scholar 

  10. J. Neddersen, G. Chumanov, T.M. Cotton, Appl. Spectrosc. 47, 1959–1964 (1993)

    Article  ADS  Google Scholar 

  11. M.S. Sibbald, G. Chumanov, T.M. Cotton, J. Phys. Chem. 100, 4672–4678 (1996)

    Article  Google Scholar 

  12. A. De Giacomo, M. dell’Aglio, A. Santagata, R. Gaudiuso, O. De Pascale, P. Wagener, G.C. Messina, G. Compagnini, S. Barcikowski, Phys. Chem. Chem. Phys. 15, 3083–3092 (2013)

    Article  Google Scholar 

  13. A. De Bonis, M. Sansone, L. D’Alessio, A. Galasso, A. Santagata, R. Teghil, J. Phys. D Appl. Phys. 46, 44530–44539 (2013)

    Article  Google Scholar 

  14. V. Amendola, M. Meneghetti, Phys. Chem. Chem. Phys. 15, 3027–3046 (2013)

    Article  Google Scholar 

  15. S. Barcikowski, G. Compagnini, Phys. Chem. Chem. Phys. 15, 3022–3026 (2013)

    Article  Google Scholar 

  16. P. Wagener, S. Barcikowski, N. BårschPhotonik Int. 1, 20–23 (2011)

    Google Scholar 

  17. J. Zhu, Z. Konya, V.F. Puntes, I. Kiricsi, C.X. Miao, J.W. Ager, A.P. Alivisatos, G.A. Somorjai, Langmuir 19, 4396–4401 (2003)

    Article  Google Scholar 

  18. Z. Kónya, V.F. Puntes, I. Kiricsi, J. Zhu, J.W. Ager, M.K. Ko, H. Frei, P. Alivisatos, G.A. Somorjai, Chem. Mater. 15, 1242–1248 (2003)

    Article  Google Scholar 

  19. S. Rojas, F.J. Garcıa-Garcıa, S. Jaras, M.V. Martınez-Huerta, J.L. Fierro-Garcıa, M. Boutonnet, Appl. Catal. A Gen. 285, 24–35 (2005)

    Article  Google Scholar 

  20. S. Bhattacharyya, A. Gabashvili, N. Perkas, A. Gedanken, J. Phys. Chem. C 111, 11161–11167 (2007)

    Article  Google Scholar 

  21. S. Bhattacharyya, A. Gedanken, J. Phys. Chem. C 112, 659–665 (2008)

    Article  Google Scholar 

  22. D.S. Gopala, R.R. Bhattacharjee, R. Richards, Appl. Organometal. Chem. 27, 1–5 (2013)

    Article  Google Scholar 

  23. S. Hashimoto, T. Uwada, H. Masuhara, T. Asahi, J. Phys. Chem. C 112, 15089–15093 (2008)

    Article  Google Scholar 

  24. G.-P. Yong, D. Tian, H.-W. Tong, S.-M. Liu, J. Mol. Catal. A Chem. 323, 40–44 (2010)

    Article  Google Scholar 

  25. C.M. Maroneze, L.P. da Costa, F.A. Sigoli, Y. Gushikem, I.O. Mazali, Synth. Met. 160, 2099–2103 (2010)

    Article  Google Scholar 

  26. Y. Chi, L. Zhao, Q. Yuan, Y. Li, J. Zhang, J. Tu, N. Li, X. Li, Chem. Eng. J. 195–196, 254–260 (2012)

    Article  Google Scholar 

  27. S. Huh, J. Wiench, J. Chyoo, M. Pruski, V.S.Y. Lin, Chem. Mater. 15, 4247–4256 (2003)

    Article  Google Scholar 

  28. W. Gac, A. Derylo-Marczewska, S. Pasieczna-Patkowska, N. Popivnyak, G. Zukocinski, J. Mol. Catal. A Chem. 268, 15–23 (2007)

    Article  Google Scholar 

  29. W. Zhu, Y. Han, L. An, Microporous Mesoporous Mater. 80, 221–226 (2005)

    Article  Google Scholar 

  30. D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science 279, 548–552 (1998)

    Article  ADS  Google Scholar 

  31. A. Szegedi, Z. Kónya, D. Méhn, E. Solymár, G. Pál-Borbély, Z.E. Horváth, L.P. Biró, I. Kiricsi, Appl. Catal. A Gen. 272, 257–266 (2004)

    Article  Google Scholar 

  32. U. Kreibig, M. Vollmer, Optical properties of metal clusters (Springer, New York, 1995)

    Book  Google Scholar 

  33. N. Bogdanchikova, F.C. Meunier, M. Avalos-Borja, J.P. Breen, A. Pestryakov, Appl. Catal. B Environ. 36, 287–297 (2002)

    Article  Google Scholar 

  34. X. Zhang, Z. Qu, F. Yu, Y. Wang, J. Catal. 297, 264–271 (2013)

    Article  Google Scholar 

  35. Y. Sohn, J. Mol. Catal. A Chem. 379, 59–67 (2013)

    Article  Google Scholar 

  36. L.F. Liotta, Appl. Catal. B Environ. 100, 403–412 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This paper draws on work undertaken as part of the project CLaN (Combined Laser Nanotechnology) co-financed by the Operational Programme ERDF Basilicata 2007–2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Santagata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szegedi, Á., Popova, M., Valyon, J. et al. Comparison of silver nanoparticles confined in nanoporous silica prepared by chemical synthesis and by ultra-short pulsed laser ablation in liquid. Appl. Phys. A 117, 55–62 (2014). https://doi.org/10.1007/s00339-014-8499-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8499-8

Keywords

Navigation