Skip to main content
Log in

Broadband light absorption using a multilayered gap surface plasmon resonator

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A broadband visible light absorber composed of multiple metal-dielectric-metal (MMDM) layers is proposed and numerically investigated. Dielectric layers of different thicknesses in the MMDM structure lead to multiple plasmon resonances at different wavelengths; as a result, efficient broadband absorption can be achieved under optimized conditions. We found that an average simulated absorption of 93 % was obtained over the entire visible spectrum of 400–700 nm by controlling the geometric parameters. Furthermore, the origin of the broadband absorption was studied, and the effects of the diameter and pitch of the pattern on the absorption were investigated. Our proposed structure with a periodic array of circular patterns represents a novel candidate for future applications in photovoltaic cells and thermal emitters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.A. Maier, P.G. Kili, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, A.A.G. Requicha, Nat. Mater. 2, 229 (2003)

    ADS  Google Scholar 

  2. B. Lamprecht, G. Schider, R.T. Lechner, H. Ditlbacher, J.R. Krenn, A. Leitner, F.R. Aussenegg, Phys. Rev. Lett. 84, 4721 (2000)

    Article  ADS  Google Scholar 

  3. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Nature 391, 667 (1998)

    Article  ADS  Google Scholar 

  4. J.N. Munday, H.A. Atwater, Nano Lett. 11, 2195 (2011)

    Article  ADS  Google Scholar 

  5. H.A. Atwater, A. Polman, Nat. Mater. 9, 205 (2010)

    ADS  Google Scholar 

  6. Y.-H. Ye, Y.-W. Jiang, M.-W. Tsai, Y.-T. Chang, C.-Y. Chen, et al., Appl. Phys. Lett. 93, 033113 (2008)

    Article  ADS  Google Scholar 

  7. J. Cesario, R. Quidant, G. Badenes, S. Enoch, Opt. Lett. 30, 3404 (2005)

    Article  ADS  Google Scholar 

  8. S. Kachan, O. Stenzel, A. Ponyavina, Appl. Phys. B 84, 281 (2006)

    Article  ADS  Google Scholar 

  9. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Phys. Rev. Lett. 100, 207402 (2008)

    Article  ADS  Google Scholar 

  10. J. Hao, J. Wang, X. Liu, W.J. Padilla, L. Zhou, M. Qiu, Appl. Phys. Lett. 96, 251104 (2010)

    Article  ADS  Google Scholar 

  11. K. Aydin, V.E. Ferry, R.M. Briggs, H.A. Atwater, Nat. Commun. 2, 517 (2011)

    Article  ADS  Google Scholar 

  12. M.G. Nielsen, A. Pors, O. Albrektsen, S.I. Bozhevolnyi, Opt. Express 20, 13311 (2012)

    Article  ADS  Google Scholar 

  13. J. Wang, C. Fan, P. Ding, J. He, Y. Cheng, W. Hu, G. Cai, E. Liang, Q. Xue, Opt. Express 20, 14871 (2012)

    Article  Google Scholar 

  14. E.D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985)

    Google Scholar 

  15. M.G. Nielsen, D.K. Gramotnev, A. Pors, O. Albrektsen, S.I. Bozhevolnyi, Opt. Express 19, 19310 (2011)

    Article  ADS  Google Scholar 

  16. R. Gordon, A.G. Brolo, Opt. Express 13, 1933 (2005)

    Article  ADS  Google Scholar 

  17. H. Shi, C. Wang, C. Du, X. Luo, X. Dong, H. Gao, Opt. Express 13, 6815 (2005)

    Article  ADS  Google Scholar 

  18. Y. Ye, Y. Jin, S. He, J. Opt. Soc. Am. B 27, 498 (2010)

    Article  Google Scholar 

  19. N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, Nano lett. 10, 2342 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by project (2E24572) funded by the Korea Institute of Science and Technology (KIST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyungduk Ko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, H., Ko, DH., Cho, Y. et al. Broadband light absorption using a multilayered gap surface plasmon resonator. Appl. Phys. A 116, 857–861 (2014). https://doi.org/10.1007/s00339-014-8459-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8459-3

Keywords

Navigation