Skip to main content
Log in

Smooth surface morphology and low dislocation density of p-GaN using indium-assisted growth

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Mg-doped, 1-μm-thick, p-type GaN films were grown by metal-organic chemical vapor deposition using indium-assisted method. The influence of flow rate ratio of indium to magnesium (In/Mg ratio) on the quality of p-GaN thin films was investigated by atomic force microscope, X-ray diffraction, Hall measurement and secondary ion mass spectroscopy. The surface roughness, crystalline quality and hole concentrations of p-GaN present a different variation tendency below and above 0.183 In/Mg ratio. The evolution process of indium-adlayer model considering adsorption, desorption and the transformation of indium mono-adlayer was proposed to explain the above phenomenon. Indium-assisted growth method can improve surface smoothness and crystalline quality of p-GaN effectively without affecting its electrical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Schmidt, M. Siebert, J.I. Flege, S. Figge, S. Gangopadhyay, A. Pretorius, T.-L. Lee, J. Zegenhagen, L. Gregoratti, A. Barinov, A. Rosenauer, D. Hommel, J. Falta, Phys. Status Solidi B 248, 1810 (2011)

    Article  Google Scholar 

  2. C.-R. Lee, J.-Y. Leem, S.-K. Noh, S.-E. Park, J.-I. Lee, C.-S. Kim, S.-J. Son, K.-Y. Leem, J. Cryst. Growth 193, 300 (1998)

    Article  ADS  Google Scholar 

  3. G. Martınez-Criado, A. Cros, A. Cantarero, R. Dimitrov, O. Ambacher, M. Stutzmann, J. Appl. Phys. 88, 3470 (2000)

    Article  ADS  Google Scholar 

  4. C. Simbrunner, M. Wegscheider, M. Quast, T. Li, A. Navarro-Quezada, H. Sitter, A. Bonanni, Appl. Phys. Lett. 90, 142108 (2007)

    Article  ADS  Google Scholar 

  5. M.Z. Kauser, A. Osinsky, A.M. Dabiran, S.J. Pearton, J. Appl. Phys. 97, 083715-1 (2005)

    Google Scholar 

  6. Y. Aoyagi, M. Takeuchi, S. Iwai, H. Hirayama, Appl. Phys. Lett. 99, 112110–112111 (2011)

    Article  ADS  Google Scholar 

  7. S.J. Chung, M.S. Kumar, Y.S. Lee, E.-K. Suh, M.H. An, J. Phys. D Appl. Phys. 43, 185101-1 (2010)

    Google Scholar 

  8. F.C. Chang, K.C. Shen, H.M. Chung, M.C. Lee, W.H. Chen, W.K. Chen, Chinese J. Phys. 40, 637 (2002)

    ADS  Google Scholar 

  9. S. Yamaguchi, Y. Iwamura, Y. Watanabe, M. Kosaki, Y. Yukawa, S. Nitta, S. Kamiyama, H. Amano, I. Akasaki, Phys. Stat. Sol. a 192, 453 (2002)

    Article  ADS  Google Scholar 

  10. F.C. Frank, Acta Crystallogr. 4, 497 (1951)

    Article  Google Scholar 

  11. B. Heying, E.J. Tarsa, C.R. Elsass, P. Fini, S.P. DenBaars, J.S. Speck, J. Appl. Phys. 85, 6470 (1999)

    Article  ADS  Google Scholar 

  12. J.C. Zhang, D.G. Zhao, J.F. Wang, Y.T. Wang, J. Chen, J.P. Liu, H. Yang, J. Cryst. Growth 268, 24 (2004)

    Article  ADS  Google Scholar 

  13. M.E. Vickers, M.J. Kappers, R. Datta, C. McAleese, T.M. Smeeton, F.D.G. Rayment, C.J. Humphreys, J. Phys. D Appl. Phys. 38, A99 (2005)

    Article  ADS  Google Scholar 

  14. S. Yamaguchi, M. Kariya, T. Kashima, S. Nitta, M. Kosaki, Y. Yukawa, Phys. Rev. B 64, 035318 (2001)

    Article  ADS  Google Scholar 

  15. M.G. Cheong, K.S. Kim, C.S. Kim, R.J. Choi, H.S. Yoon, N.W. Namgung, E.-K. Suh, H.J. Lee, Appl. Phys. Lett. 80, 1001 (2002)

    Article  ADS  Google Scholar 

  16. N.G. Weimann, L.F. Eastman, D. Doppalapudi, H.M. Ng, T.D. Moustakas, J. Appl. Phys. 83, 3656 (1998)

    Article  ADS  Google Scholar 

  17. D.C. Look, D.C. Reynolds, J.W. Hemsky, J.R. Sizelove, R.L. Jones, R.J. Molnar, Phys. Rev. Lett. 79, 2273 (1997)

    Article  ADS  Google Scholar 

  18. J. Neugebauer, T.K. Zywietz, M. Scheffler, J.E. Northrup, H. Chen, R.M. Feenstra, Phys. Rev. Lett. 90, 056101-1 (2003)

    Google Scholar 

  19. S. Choi, T.-H. Kim, S. Wolter, A. Brown, H.O. Everitt, M. Losurdo, G. Bruno, Phys. Rev. B 77, 115435-1 (2008)

    Google Scholar 

  20. Z.H. Feng, H. Yang, S.M. Zhang, L.H. Duan, H. Wang, Y.T. Wang, J. Cryst. Growth 235, 207 (2002)

    Article  ADS  Google Scholar 

  21. J.E. Northrup, C.G. Van de Walle, Appl. Phys. Lett. 84, 4322 (2004)

    Article  ADS  Google Scholar 

  22. H.M. Chung, W.C. Chuang, Y.C. Pan, C.C. Tsai, M.C. Lee, W.H. Chen, W.K. Chen, C.I. Chiang, C.H. Lin, H. Chang, Appl. Phys. Lett. 76, 897 (2000)

    Article  ADS  Google Scholar 

  23. C.E.C. Dam, P.R. Hageman, W.J.P. van Enckevort, T. Bohnen, P.K. Larsen, J. Cryst. Growth 307, 19 (2007)

    Article  ADS  Google Scholar 

  24. C.Y. Chiou, C.C. Wang, Y.C. Ling, C.I. Chiang, Appl. Surf. Sci. 203–204, 482–485 (2003)

    Article  Google Scholar 

  25. R. Chierchia, T. Bottcher, H. Heinke, S. Einfeldt, S. Figge, D. Hommel, J. Appl. Phys. 93, 8918 (2003)

    Article  ADS  Google Scholar 

  26. F. Jiang, R.-V. Wang, A. Munkholm, S.K. Streiffer, G.B. Stephenson, P.H. Fuoss, K. Latifi, C. Thompson, Appl. Phys. Lett. 89, 161915 (2006)

    Article  ADS  Google Scholar 

  27. Q. Yan, A. Janotti, M. Scheffler, C.G. Van de Walle, Appl. Phys. Lett. 100, 142110–142111 (2012)

    Article  ADS  Google Scholar 

  28. W.-C. Ke, S.-J. Lee, S.-L. Chen, C.-Y. Kao, W.-C. Houng, Mater. Chem. Phys. 133, 1029 (2012)

    Google Scholar 

  29. A.F. Wright, Ulrike Grossner, Appl. Phys. Lett. 73, 2751 (1998)

    Article  ADS  Google Scholar 

  30. Y.L. Xian, S.J. Huang, Z.Y. Zheng, B.F. Fan, Z.S. Wu, H. Jiang, G. Wang, J. Cryst. Growth 325, 32 (2011)

    Article  ADS  Google Scholar 

  31. Orest Malyk, Diam. Relat. Mater. 23, 23 (2012)

    Article  ADS  Google Scholar 

  32. P. Kozodoy, H. Xing, S.P. DenBaars, K. Umesh Mishra, A. Saxler, R. Perrin, S. Elhamri, W.C. Mitchel, J. Appl. Phys. 87, 1832 (2000)

    Article  ADS  Google Scholar 

  33. K. Kumakura, T. Makimoto, N. Kobayashi, J. Appl. Phys. 93, 3370 (2003)

    Article  ADS  Google Scholar 

  34. J.D. Albrecht, P.P. Ruden, T.L. Reinecke, J. Appl. Phys. 92, 3803 (2002)

    Article  ADS  Google Scholar 

  35. D. Lancefield, H. Eshghi, J. Phys.:Condens.Matter 13, 8939 (2001)

    ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 61223005, No. 61076045, No. 11004020), National High Technology Research and Development Program (863 program) (No. 2011AA03A102), the fundamental research funds for the central universities (Nos. DUT12LK22, DUT11LK43, DUT11RC(3)45, DUT13RC205), the research fund for the doctoral program of higher education (No. 20110041120045), the open fund of the state key laboratory of functional materials for informatics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kexiong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, K., Liang, H., Shen, R. et al. Smooth surface morphology and low dislocation density of p-GaN using indium-assisted growth. Appl. Phys. A 116, 1561–1566 (2014). https://doi.org/10.1007/s00339-014-8384-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8384-5

Keywords

Navigation