Skip to main content
Log in

The role of the solvent in the ultrashort laser ablation of palladium target in liquid

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present study, the pulsed laser ablation in liquid technique was used to produce palladium nanoparticles in acetone and in water. The composition, morphology and oxidation state of the obtained nanoparticles have been characterized by HR-TEM, XPS and XRD techniques. The results evidence that the nature of the solvent influences the physical–chemical properties of the products. In acetone non-aggregate metallic nanoparticles have been obtained, while in water the oxidation of the particles surface is present, as showed by the XPS analysis. Moreover, the particles obtained in water are aggregated and the coalescence effect is evident. The different size distributions of nanoparticles obtained in the two liquids have been interpreted considering the different cavitation bubble dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Z. Yan, D.B. Chrisey, J. Photoch. Photobio. C 13, 204 (2012)

    Article  Google Scholar 

  2. D. Tan, S. Zhou, J. Qiu, N. Khusro, J. Photoch. Photobio. C 17, 50 (2013)

    Article  Google Scholar 

  3. G.W. Yang, Prog. Mater Sci. 52, 648 (2007)

    Article  Google Scholar 

  4. V. Amendola, M. Meneghetti, Phys. Chem. Chem. Phys. 15, 3027 (2013)

    Article  Google Scholar 

  5. A. De Bonis, A. Galasso, N. Ibris, A. Laurita, A. Santagata, R. Teghil, Appl. Surf. Sci. 268, 571 (2013)

    Article  ADS  Google Scholar 

  6. A. Santagata, A. De Bonis, A. De Giacomo, M. Dell’Aglio, A. Laurita, G.S. Senesi, R. Gaudiuso, S. Orlando, R. Teghil, G.P. Parisi, J. Chem. Phys. C 115, 5160 (2011)

    Article  Google Scholar 

  7. T. Tsuji, M. Tsuji, S. Hashimoto, J. Photoch. Photobio. A 221, 224 (2011)

    Article  Google Scholar 

  8. A. Nath, S.S. Laha, A. Khara, Appl. Surf. Sci. 257, 3118 (2011)

    Article  ADS  Google Scholar 

  9. Y. Xu, L. Guo, L. Huang, K. Palanisamy, D. Kim, G. Chen, J. Colloid Interf. Sci. 409, 32 (2013)

    Article  Google Scholar 

  10. V.K. Vidhu, D. Philip, Spectrochim. Acta. A 117, 102 (2014)

    Article  ADS  Google Scholar 

  11. A. Biffin, M. Zecca, M. Basato, J. Mol. Catal. A Chem. 173, 249 (2001)

    Article  Google Scholar 

  12. J.M. Campelo, D. Luna, R. Luque, J.M. Marinas, A.A. Romero, Chem. Sus. Chem. 2, 18 (2009)

    Article  Google Scholar 

  13. G. Cristoforetti, E. Pitzalis, R. Spiniello, R. Ishak, F. Giammanco, M. Muniz-Miranda, S. Caporali, Appl. Surf. Sci. 258, 3289 (2012)

    Article  ADS  Google Scholar 

  14. G. Cristoforetti, E. Pitzalis, R. Spiniello, R. Ishak, M. Muniz-Miranda, J. Phys. Chem. C 115, 5073 (2011)

    Article  Google Scholar 

  15. A. De Bonis, M. Sansone, L. D’Alessio, A. Galasso, A. Santagata, R. Teghil, J. Phys. D 46, 445301 (2013)

    Article  Google Scholar 

  16. J.E. Castle, A.M. Salvi, J. Electron. Spectrosc. 114–116, 1103 (2001)

    Article  Google Scholar 

  17. J.W. Rayleigh, Phil. Mag. 34, 94 (1917)

    Article  MATH  Google Scholar 

  18. E. Desimoni, A.M. Salvi, F. Langerame, J.F. Watts, J. Electron. Spectrosc. 85, 179 (1997)

    Article  Google Scholar 

  19. http://www.nist.gov

  20. L.S. Kibis, A.I. Titkov, A.I. Stadnichenko, S.V. Koscheev, A.I. Boronin, Appl. Surf. Sci. 255, 9248 (2009)

    Article  ADS  Google Scholar 

  21. C.S.S.R. Kumar, H. Modrow, J. Hormes, J. Part. Part. Syst. Charact. 19, 336 (2002)

    Article  Google Scholar 

  22. S.B. Wen, X. Mao, R. Greif, R.E. Russo, J. Appl. Phys. 101, 123105 (2007)

    Article  ADS  Google Scholar 

  23. J.P. Sylvestre, A.V. Kabashin, E. Sacher, M. Meunier, Appl. Phys. A 80, 753 (2005)

    Article  ADS  Google Scholar 

  24. A.V. Kabashin, Ph. Delaporte, A. Pereira, D. Grojo, R. Torres, Th. Sarnet, M. Sentis, Nanoscale Res. Lett. 5, 454 (2010)

    Article  ADS  Google Scholar 

  25. D. Grojo, J. Hermann, A. Perrone, J. Appl. Phys. 97, 063306 (2005)

    Article  ADS  Google Scholar 

  26. R. Teghil, L. D’Alessio, A. De Bonis, D. Ferro, A. Galasso, G. Lanza, A. Santagata, P. Villani, D.J. Sordelet, Thin Solid Films 517, 1880–1886 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This paper draws on work undertaken as part of the project CLaN (Combined Laser Nanotechnology) co-financed by the Operational Programme ERDF Basilicata 2007–2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. De Bonis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Bonis, A., Sansone, M., Galasso, A. et al. The role of the solvent in the ultrashort laser ablation of palladium target in liquid. Appl. Phys. A 117, 211–216 (2014). https://doi.org/10.1007/s00339-014-8362-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8362-y

Keywords

Navigation