Skip to main content
Log in

Rapid micromachining of high aspect ratio holes in fused silica glass by high repetition rate picosecond laser

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We present multiple methods of high aspect ratio hole drilling in fused silica glass, taking advantage of high power and high repetition rate picosecond lasers and flexible beam delivery methods to excise deep holes with minimal collateral damage. Combinations of static and synchronous scanning of laser focus were explored over a range of laser repetition rates and burst-train profiles that dramatically vary laser plume interaction dynamics, heat-affected zone, and heat accumulation physics. Chemically assisted etching of picosecond laser modification tracks are also presented as an extension from femtosecond laser writing of volume nanograting to form high aspect ratio (77) channels. Processing windows are identified for the various beam delivery methods that optimize the laser exposure over energy, wavelength, and repetition rate to reduce microcracking and deleterious heating effects. The results show the benefits of femtosecond laser interactions in glass extend into the picosecond domain, where the attributes of higher power further yield wide processing windows and significantly faster fabrication speed. High aspect ratio holes of 400 μm depth were formed over widely varying rates of 333 holes per second for mildly cracked holes in static-focal positioning through to one hole per second for low-damage and taper free holes in synchronous scanning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R.R. Gattass, E. Mazu, Nat. Phot. 2:219 (2008)

    Article  Google Scholar 

  2. X. Liu, D. Du, G. Mourou, Quant. Elect. IEEE J. 33(10):1706 (1997). doi:10.1109/3.631270

    Article  ADS  Google Scholar 

  3. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B.N. Chichkov, B. Wellegehausen, H. Welling, J. Opt. Soc. Am. B 14(10):2716 (1997). doi:10.1364/JOSAB.14.002716

    Article  ADS  Google Scholar 

  4. H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, E. Campbell, Appl. Phy. A 65:367 (1997). doi:10.1007/s003390050593

    Article  ADS  Google Scholar 

  5. B.C. Stuart, M.D. Feit, A.M. Rubenchik, B.W. Shore, M.D. Perry, Phys. Rev. Lett. 74:2248 (1995). doi:10.1103/PhysRevLett.74.2248

    Article  ADS  Google Scholar 

  6. P. Pronko, S. Dutta, J. Squier, j. Rudd, D. Du, G. Mourou, Opt. Commun. 114(12):106 (1995). doi:10.1016/0030-4018(94)00585-I

    Article  ADS  Google Scholar 

  7. A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, A. Tünnermann, Opt. Express 16(12):8958 (2008). doi:10.1364/OE.16.008958

    Article  ADS  Google Scholar 

  8. R.L. Harzic, D. Breitling, M. Weikert, S. Sommer, C. F. Appl. Surf. Sci. 249(14):322 (2005). doi:10.1016/j.apsusc.2004.12.027

    Article  ADS  Google Scholar 

  9. M. Lapczyna, K.P. Chen, P.R. Herman, H.W. Tan, R.S. Marjoribanks, Appl. Phys. A Mater. Sci. Process. 69:883 (1999)

    Article  ADS  Google Scholar 

  10. J. Ren, M. Kelly, L. Hesselink, Opt. Lett. 30(13):1740 (2005). doi:10.1364/OL.30.001740

    Article  ADS  Google Scholar 

  11. S. Eaton, H. Zhang, P.R. Herman, F. Yoshino, L. Shah, J. Bovatsek, A. Arai, Opt. Express 13(12):4708 (2005). doi:10.1364/OPEX.13.004708

    Article  ADS  Google Scholar 

  12. J. Koch, E. Fadeeva, M. Engelbrecht, C. Ruffert, H. Gatzen, A. Ostendorf, B. Chichkov, Appl. Phys. A Mater. Sci. Process. 82:23 (2006). doi:10.1007/s00339-005-3418-7

    Article  ADS  Google Scholar 

  13. R. An, J.D. Uram, E.C. Yusko, K. Ke, M. Mayer, A.J. Hunt, Opt. Lett. 33(10):1153 (2008). doi:10.1364/OL.33.001153

    Article  ADS  Google Scholar 

  14. L. Shah, J. Tawney, M. Richardson, K. Richardson. Appl. Surf. Sci. 183(34):151 (2001). doi:10.1016/S0169-4332(01)00468-8

    Article  ADS  Google Scholar 

  15. W. Kautek, J. Krueger, 600–611 (1994). doi:10.1117/12.184768

  16. V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, P. Laporta, L. Magagnin, P.L. Cavallotti. Appl. Phy. Lett. 88(19):191107 (2006). doi:10.1063/1.2203335

    Article  ADS  Google Scholar 

  17. A. Rosenfeld, D. Ashkenasi, E. Campbell, M. Lorenz, R. Stoian, H. Varel, 7–23 (1998)

  18. D. Hwang, T. Choi, C. Grigoropoulos, Appl. Phy. A 79:605 (2004). doi:10.1007/s00339-004-2547-8

    Article  ADS  Google Scholar 

  19. A. Manz, H. Becker, Microsystem Technology in Chemistry and Life Science, vol. 194. (Springer, New York, 1998)

    Book  Google Scholar 

  20. H. Gleskova, S. Wagner, Q. Zhang, D. Shen, IEEE Elect. Dev. Lett. 18(11):523 (1997)

    Article  ADS  Google Scholar 

  21. J. Voldman, M.L. Gray, M.A. Schmidt, Annu. Rev. Biomed. Eng. 1(1):401 (1999). doi:10.1146/annurev.bioeng.1.1.401

    Article  Google Scholar 

  22. B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Appl. Phys. A Mater. Sci. Process. 63:109 (1996). doi:10.1007/s003390050359

    Article  ADS  Google Scholar 

  23. S. Klimentov, S. Garnov, T. Kononenko, V. Konov, P. Pivovarov, F. Dausinger, Appl. Phys. A Mater. Sci. Process. 69:S633 (1999). doi:10.1007/s003390051493

    Article  ADS  Google Scholar 

  24. P.R. Herman, A. Oettl, K.P. Chen, R.S. Marjoribanks, Commer. Biomed. Appl. Ultrafast Lasers 3616(1):148 (1999). doi:10.1117/12.351828

    Article  ADS  Google Scholar 

  25. A. Nebel, T. Herrmann, B. Henrich, R. Knappe, Proc. SPIE : 87–98 (2005). doi:10.1117/12.601651

  26. R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I.V. Hertel, RIKEN Rev. 50:71 (2003)

    Google Scholar 

  27. D. Esser, S. Rezaei, J. Li, P.R. Herman, J. Gottmann, Opt. Express 19(25):25632 (2011). doi:10.1364/OE.19.025632

    Article  ADS  Google Scholar 

  28. A. Salleo, F.Y. Genin, M.D. Feit, A.M. Rubenchik, T. Sands, S.S. Mao, R.E. Russo, Appl. Phy. Lett. 78(19):2840 (2001). doi:10.1063/1.1362332

    Article  ADS  Google Scholar 

  29. Z. Wu, H. Jiang, Z. Zhang, Q. Sun, H. Yang, Q. Gong, Opt. Express 10(22):1244 (2002)

    Article  ADS  Google Scholar 

  30. Y. Li, K. Itoh, W. Watanabe, K. Yamada, D. Kuroda, J. Nishii, Y. Jiang, Opt. Lett. 26(23):1912 (2001). doi:10.1364/OL.26.001912

    Article  ADS  Google Scholar 

  31. M.K. Bhuyan, F. Courvoisier, P.A. Lacourt, M. Jacquot, L. Furfaro, M.J. Withford, M. Dudley, Opt. Express 18(2):566 (2010). doi:10.1364/OE.18.000566

    Article  ADS  Google Scholar 

  32. D. Hwang, K. Hiromatsu, H. Hidai, C. Grigoropoulos, Appl. Phys. A Mater. Sci. Process 94:555 (2009). doi:10.1007/s00339-008-4973-5

    Article  ADS  Google Scholar 

  33. L. Jiang, P. Liu, X. Yan, N. Leng, C. Xu, H. Xiao, Y. Lu, Opt. Lett. 37(14):2781 (2012). doi:10.1364/OL.37.002781

    Article  ADS  Google Scholar 

  34. W.W. Hansen, S.W. Janson, H. Helvajian, Proc. SPIE 2991:104 (1997). doi:10.1117/12.273716

    Article  ADS  Google Scholar 

  35. S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, H. Misawa, Appl. Phys. A Mater. Sci. Process 79:1549 (2004). doi:10.1007/s00339-004-2845-1

    ADS  Google Scholar 

  36. Y. Shimotsuma, P.G. Kazansky, J. Qiu, K. Hirao, Phys. Rev. Lett. 91:247405 (2003). doi:10.1103/PhysRevLett.91.247405

    Article  ADS  Google Scholar 

  37. C. Hnatovsky, R. Taylor, E. Simova, P. Rajeev, D. Rayner, V. Bhardwaj, P. Corkum, Appl. Phys. A Mater. Sci. Process 84:47 (2006). doi:10.1007/s00339-006-3590-4

    Article  ADS  Google Scholar 

  38. S. Kiyama, S. Matsuo, S. Hashimoto, Y. Morihira, J. Phys. Chem. C 113(27):11560 (2009). doi:10.1021/jp900915r

    Article  Google Scholar 

  39. S. Ho, P.R. Herman, J.S. Aitchison, Appl. Phys. A Mater. Sci. Process 106:5 (2012). doi:10.1007/s00339-011-6675-7

    Article  ADS  Google Scholar 

  40. M.K. Bhuyan, F. Courvoisier, P.A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, J.M. Dudley, Appl. Phys. Lett. 97(8):081102 (2010). doi:10.1063/1.3479419

    Article  ADS  Google Scholar 

  41. C. Corbari, A. Champion, M. Gecevičius, M. Beresna, M. Lancry, B. Poumellec, Y. Bellouard, P.G. Kazansky, in CLEO: Applications and Technology (Optical Society of America, 2012), p. ATu3L.2

  42. J. Li, S. Ho, M. Haque, P.R. Herman, Opt. Mater. Express 2(11):1562 (2012). doi:10.1364/OME.2.001562

    Article  Google Scholar 

  43. S.M. Eaton, H. Zhang, M.L. Ng, J. Li, W.J. Chen, S. Ho, P.R. Herman, Opt. Express 16(13):9443 (2008). doi:10.1364/OE.16.009443

    Article  ADS  Google Scholar 

  44. D. Milam, Appl. Opt. 37(3):546 (1998). doi:10.1364/AO.37.000546

    Article  ADS  Google Scholar 

  45. Q. Sun, A. Saliminia, F. Théberge, R. Vallée, S.L. Chin, J. Micromech. Microeng 18(3):035039 (2008)

    Article  ADS  Google Scholar 

  46. S. Russ, C. Siebert, U. Eppelt, C. Hartmann, B. Fait, W. Schulz, Proc. SPIE 8608:86080E (2013). doi:10.1117/12.2001991

    Article  ADS  Google Scholar 

  47. C.B. Schaffer, E.N. Glezer, N. Nishimura, E. Mazur, Proc. SPIE 3269:36 (1998). doi:10.1117/12.312339

    Article  ADS  Google Scholar 

  48. J. Schwarz, J.C. Diels, Appl. Phys. A Mater. Sci. Process. 77:185 (2003). doi:10.1007/s00339-003-2141-5

    ADS  Google Scholar 

  49. S. Rezaei, M. Sc Thesis, pp. 46–75 (2011)

  50. A. Salleo, T. Sands, F. Gnin, Appl. Phys. A Mater. Sci. Process 71:601 (2000). doi:10.1007/s003390000546

    Article  ADS  Google Scholar 

  51. Y. Matsuoka, Y. Kizuka, T. Inoue, Appl. Phys. A Mater. Sci. Process 84:423 (2006). doi:10.1007/s00339-006-3629-6

    Article  ADS  Google Scholar 

  52. W. Hu, Y. Shin, G. King, Appl. Phys. A Mater. Sci. Process 98:407 (2010). doi:10.1007/s00339-009-5405-x

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support from the Natural Science and Engineering Research Council, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter R. Herman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karimelahi, S., Abolghasemi, L. & Herman, P.R. Rapid micromachining of high aspect ratio holes in fused silica glass by high repetition rate picosecond laser. Appl. Phys. A 114, 91–111 (2014). https://doi.org/10.1007/s00339-013-8155-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8155-8

Keywords

Navigation