Skip to main content
Log in

Effects of fibre-surface morphology on the mechanical properties of Porifera-inspired rubber-matrix composites

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, mineralised organic fibre morphologies, inspired by the structures of Porifera (sponges) are correlated to the mechanical performance of fibre reinforced rubbers. The mineralised structures are rich in calcium carbonate and silica. These compounds nucleate and precipitate on the fibre surfaces yielding different morphologies as a function of mineral ion concentrations. Smaller mineralised precipitates manifestly improve the mechanical performance of composites while thicker precipitates enveloping the fibres give rise to inferior properties. Mechanisms and evidenced reasoning for these differences are reported herein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S. Weiner, P.M. Dove, An overview of biomineralisation processes and the problem of the vital effect, in Biomineralization, ed. by P.M. Dove, J.J. Yoreo, S. Weiner. Reviews in Mineralogy and Geochemistry, vol. 54 (2003). Series ed. J.J. Rosso. Chapter 1

    Google Scholar 

  2. F.H. Wilt, Biomineralization of the spicules of sea urchin embryos. Zool. Sci. 19, 253–261 (2002)

    Article  Google Scholar 

  3. H.A. Lowenstam, S. Weiner, On Biomineralisation (Oxford University Press, New York, 1989)

    Google Scholar 

  4. H. Lowenstam, L. Margulis, Calcium regulation and the appearance of calcareous skeletons in the fossil record, in The Mechanisms of Biomineralisation in Animals and Plants, ed. by M. Omori, N. Eatabe (Tokai University Press, Tokyo, 1980), pp. 289–300

    Google Scholar 

  5. K. Simkiss, K. Wilbur, Biomineralisation: Cell Biology and Mineral Deposition (Academic Press, San Diego, 1989)

    Google Scholar 

  6. M.J. Berridge, M.D. Bootman, P. Lipp, Calcium—a life and death signal. Nature 385, 546–548 (1998)

    Google Scholar 

  7. L. Addadi, S. Raz, S. Weiner, Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralisation. Adv. Mater. 15, 959–970 (2003)

    Article  Google Scholar 

  8. E. Beniash, J. Aizenberg, L. Addadi, S. Weiner, Amorphous calcium carbonate transforms into calcite during sea-urchin larval spicule growth. Proc. R. Soc. Lond. B, Biol. Sci. 264, 461–465 (1997)

    Article  ADS  Google Scholar 

  9. I.M. Weiss, N. Tuross, L. Addadi, S. Weiner, Mollusc larval shell formation: amorphous calcium carbonate is a precursor for aragonite. J. Exp. Zool. 293, 478–491 (2002)

    Article  Google Scholar 

  10. H.A. Lowenstam, Minerals formed by organisms. Science 211, 1126–1131 (1981)

    Article  ADS  Google Scholar 

  11. S. Mann, Mineralisation in biological systems. Struct. Bond. 54, 125–174 (1983)

    Article  Google Scholar 

  12. J.J. De Yoreo, P.G. Vekilov, Principles of crystal nucleation and growth, in Biomineralization, ed. by P.M. Dove, J.J. Yoreo, S. Weiner. Reviews in Mineralogy and Geochemistry, vol. 54 (2003). Series ed. J.J. Rosso. Chapter 3

    Google Scholar 

  13. A.H. Heuer, D.J. Fink, V.J. Laraia, J.L. Arias, P.D. Calvert, K. Kendall, G.L. Messing, J. Blackwell, P.C. Rieke, D.H. Thompson, A.P. Wheeler, A. Veis, A.I. Caplan, Innovative materials processing strategies: a biomimetic approach. Science 255, 1098 (1992)

    Article  ADS  Google Scholar 

  14. H. Cheung, M. Ho, K. Lau, F. Cardona, D. Hui, Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Composites, Part B, Eng. 40, 655–663 (2009)

    Article  Google Scholar 

  15. H. Ku, H. Wang, N. Pattarachaiyakoop, M. Trada, A review on the tensile properties of natural fibre reinforced polymer composites. Composites, Part B, Eng. 42, 856–873 (2011)

    Article  Google Scholar 

  16. A.K. Mohanty, A. Wibowo, M. Misra, L.T. Drzal, Effect of process engineering on the performance of natural fibre reinforced cellulose acetate biocomposites. Composites, Part A, Appl. Sci. Manuf. 35, 363–370 (2004)

    Article  Google Scholar 

  17. S.V. Joshi, L.T. Drzal, A.K. Mohanty, S. Arora, Are natural fibre composites environmentally superior to glass fibre reinforced composites? Composites, Part A, Appl. Sci. Manuf. 35, 371–376 (2004)

    Article  Google Scholar 

  18. H.L. Bos, The Potential of Flax Fibres as Reinforcement for Composite Materials (University Press Facilities, Eindhoven, 2004)

    Google Scholar 

  19. M. Pommet, J. Juntaro, J.Y.Y. Heng, A. Mantalaris, A.F. Lee, K. Wilson, G. Kalinka, M.S.P. Shaffer, A. Bismarck, Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites. Biomacromolecules 9, 1643–1651 (2008)

    Article  Google Scholar 

  20. X. Liu, L. Zhang, Y. Wang, C. Guo, E. Wang, Biomimetic crystallisation of unusual macroporous calcium carbonate spherules in the presence of phosphatidylglycerol vesicles. Cryst. Growth Des. 8, 759–762 (2008)

    Article  Google Scholar 

  21. L. Qi, J. Li, J. Ma, Biomimetic morphogenesis of calcium carbonate in mixed solutions of surfactants and double-hydrophilic block copolymers. Adv. Mater. 14, 300–303 (2002)

    Article  Google Scholar 

  22. J. Yu, J.C. Yu, L. Zhang, X. Wanga, L. Wua, Facile fabrication and characterisation of hierarchically porous calcium carbonate microspheres. Chem. Commun. 2004, 2414–2415 (2004)

    Article  Google Scholar 

  23. Z. Zhang, D. Gao, H. Zhao, C. Xie, G. Guan, D. Wang, S. Yu, Biomimetic assembly of polypeptide-stabilised CaCO3 nanoparticles. J. Phys. Chem. B 110, 8613–8618 (2006)

    Article  Google Scholar 

  24. B. Cheng, W. Cai, J. Yu, DNA-mediated morphosynthesis of calcium carbonate particles. J. Colloid Interface Sci. 352, 43–49 (2010)

    Article  Google Scholar 

  25. D. Liu, M.Z. Yates, Formation of rod-shaped calcite crystals by microemulsion-based synthesis. Langmuir 22, 5566–5569 (2006)

    Article  Google Scholar 

  26. I.W. Kim, R.E. Robertson, R. Zand, Effects of some non-ionic polymeric additives on the crystallisation of calcium carbonate. Cryst. Growth Des. 5, 513–522 (2005)

    Article  Google Scholar 

  27. X. Zhang, Z. Zhang, Y. Yan, A facile surfactant-assisted approach to the synthesis of urchin-shaped aragonite micropatterns. J. Cryst. Growth 274, 550–554 (2005)

    Article  ADS  Google Scholar 

  28. H. Cölfen, L. Qi, A systematic examination of the morphogenesis of calcium carbonate in the presence of a double-hydrophilic block copolymer. Chem. Eur. J. 7, 110–116 (2001)

    Article  Google Scholar 

  29. D. Ren, Q. Feng, X. Bourrat, Effects of additives and templates on calcium carbonate mineralisation in vitro. Micron 42, 228–245 (2010)

    Article  Google Scholar 

  30. P. Alam, A mixtures’ model for porous particle-polymer composites. Mech. Res. Commun. 37, 389–393 (2010)

    Article  Google Scholar 

  31. J. Kucera, E. Nezbedova, Poly(propylene) with micro-fillers—the way of enhancement of toughness. Polym. Adv. Technol. 18, 112–116 (2007)

    Article  Google Scholar 

  32. A. Pasila, The dry-line method in bast fibre production. Ph.D. thesis, University of Helsinki, 2004

Download references

Acknowledgements

The primary author, Parvez Alam, is extremely grateful to the marine biology students at Gadjah Mada University, Yogyakarta, Indonesia, for their invaluable help in safely gathering the marine organisms used in this study. The primary author is also grateful to the Ella and George Ehrnrooth Foundation, Finland, for their financial support in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvez Alam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alam, P., Stillfried, D.G., Celli, J. et al. Effects of fibre-surface morphology on the mechanical properties of Porifera-inspired rubber-matrix composites. Appl. Phys. A 111, 1031–1036 (2013). https://doi.org/10.1007/s00339-013-7637-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7637-z

Keywords

Navigation