Skip to main content
Log in

Fine resolution drop-on-demand electrohydrodynamic patterning of conductive silver tracks on glass substrate

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper presents the fine resolution printing of the silver patterns on the thick glass substrates, deposited through drop-on-demand electrohydrodynamic jetting by applying the pulsed voltage. The patterning is performed by ejecting ink containing silver nanoparticles through a 10 μm internal diameter glass capillary. The variations in patterns sizes are studied by changing the operating parameters and after sintering of deposited patterns on a 500 μm thick glass substrate. The minimum droplet diameter achieved is approximately 3.6 μm after the sintering process, which is 2.78 times smaller than the size of the capillary’s internal diameter. The patterns are formed by suitable overlapping of droplets by adjusting the substrate speed and minimum pattern width achieved is 6.5 μm, which is the major attraction of electrohydrodynamic printing technology. The functionality of the deposited silver patterns is measured through I–V curve and shows linear Ohmic behavior with good resistivity. The experimental results indicate that the electrohydrodynamic printing can be used for fabricating fine resolution patterns of conductive tracks on thick substrate for printed electronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D.B. Chrisey, Science 289, 879–881 (2000)

    Article  Google Scholar 

  2. B.J. Gans, P.C. Duineveld, U.S. Schubert, Adv. Mater. 16, 203–213 (2004)

    Article  Google Scholar 

  3. T. Shimoda, Y. Matsuki, M. Furusawa, T. Aoki, I. Yudasaka, H. Tanaka, H. Iwasawa, D. Wang, M. Miyasaka, Y. Takeuchi, Nature 440, 783–786 (2006)

    Article  ADS  Google Scholar 

  4. J.B. Szczech, C.M. Megaridis, D.R. Gamota, J. Zhang, IEEE Trans. Electron. Packag. Manuf. 25, 26–33 (2002)

    Article  Google Scholar 

  5. A. Bietsch, M. Hegner, H.P. Lang, C. Gerber, Langmuir 20(12), 5119–5122 (2004)

    Article  Google Scholar 

  6. P. Calvert, Chem. Mater. 13, 3299–3305 (2001)

    Article  Google Scholar 

  7. B. Derby, Annu. Rev. Matter. Res. 40, 395–414 (2010)

    Article  ADS  Google Scholar 

  8. K. Cheng, M.H. Yang, W.W. Chiu, C.Y. Huang, T.F. Ying, Y. Yang, Macromol. Rapid Commun. 26, 247 (2005)

    Article  ADS  Google Scholar 

  9. G. Taylor, Proc. R. Soc. Lond. A 280, 383–397 (1964)

    Article  ADS  MATH  Google Scholar 

  10. H.F. Poon, D.A. Saville, I.A. Aksay, Appl. Phys. Lett. 93, 133114 (2008)

    Article  ADS  Google Scholar 

  11. G.S. Bisht, G. Canton, A. Mirsepassi, L. Kulinsky, S. Oh, D. Dunn-Rankin, M.J. Madou, Nano Lett. 11(4), 1831–1837 (2011)

    Article  ADS  Google Scholar 

  12. A. Khan, K. Rahman, M.T. Hyun, D.S. Kim, K.H. Choi, Appl. Phys. A, Mater. Sci. Process. 104(4), 1113–1120 (2011)

    Article  ADS  Google Scholar 

  13. Z. Huneiti, W. Machowski, W. Balachandran, in IEEE 31th IAS Annual Meeting, San Diego, vol. 3 (1996), pp. 1768–1774

    Google Scholar 

  14. R. Juraschek, F.W. Rollgen, Int. J. Mass Spectrom. 177, 1–15 (1998)

    Article  Google Scholar 

  15. J.H. Kim, H.C. Oh, S.S. Kim, J. Aeronaut. Sci. 39(9), 819–825 (2008)

    Article  Google Scholar 

  16. D.Y. Lee, E.S. Hwang, T.U. Yu, Y.J. Kim, J. Hwang, Appl. Phys. A 82, 671–674 (2006)

    Article  ADS  Google Scholar 

  17. Z. Ahmad, J. Huang, E.S. Thian, M.J. Edirisinghe, S.N. Jayasinghe, S.M. Best, W. Bonfield, R.A. Brooks, N. Rushton, J. Biomed. Nanotechnol. 4, 185–195 (2008)

    Google Scholar 

  18. M.M. Hohman, M. Shin, G. Rutledge, M. Brennera, Phys. Fluids 13, 2201–2220 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  19. S. Korkut, D.A. Saville, I.A. Aksay, Phys. Rev. Lett. 100(3), 034503 (2008)

    Article  ADS  Google Scholar 

  20. S.Y. Kim, Y. Kim, J. Park, J. Hwang, J. Micromech. Microeng. 20, 55009 (2010)

    Article  Google Scholar 

  21. S. Korkut, D.A. Saville, I.A. Aksay, Langmuir 24, 12196–12201 (2008)

    Article  Google Scholar 

  22. J.U. Park, M. Hardy, S.J. Kang, K. Barton, K. Adair, D.K. Mukhopadhyay, C.Y. Lee, M.S. Strano, A.G. Alleyne, J.G. Georgiadis, P.M. Ferreira, J.A. Rogers, Nat. Mater. 6, 782–789 (2007)

    Article  ADS  Google Scholar 

  23. J.U. Park, J.H. Lee, U. Paik, Y. Lu, J.A. Rogers, Nano Lett. 8(12), 4210–4216 (2008)

    Article  ADS  Google Scholar 

  24. J.L. Li, J. Elast. 65, 750–757 (2007)

    Google Scholar 

  25. U. Stachewicz, J.F. Dijksman, B. Burdinski, C.U. Yurteri, J.C.M. Marijnissen, Langmuir 25, 2540–2549 (2009)

    Article  Google Scholar 

  26. L. Xu, X. Wang, T. Lei, D. Sun, L. Lin, Langmuir 27(10), 6541–6548 (2011)

    Article  Google Scholar 

  27. J. Choi, Y.J. Kim, S. Lee, S.U. Son, H.S. Ko, V.D. Nguyen, D. Byun, Appl. Phys. Lett. 93, 193508 (2008)

    Article  ADS  Google Scholar 

  28. K. Wang, J.P.W. Stark, J. Nanopart. Res. 12(3), 707–711 (2010)

    Article  Google Scholar 

  29. K. Wang, J.P.W. Stark, Appl. Phys. A, Mater. Sci. Process. 99, 763–766 (2010)

    Article  ADS  Google Scholar 

  30. D.S. Kim, A. Khan, K. Rahman, S. Khan, H.C. Kim, K.H. Choi, Mater. Manuf. Process. 26(9), 1196–1201 (2011)

    Article  Google Scholar 

  31. K. Rahman, A. Khan, N.M. Nam, K.H. Choi, D.S. Kim, Int. J. Prec. Eng. Manuf. 12(4), 663–669 (2011)

    Article  Google Scholar 

  32. H.T. Yudistira, V.D. Nguyen, P. Dutta, D. Byun, Appl. Phys. Lett. 96, 023503 (2010)

    Article  ADS  Google Scholar 

  33. U. Stachewicz, J.F. Dijksman, C.U. Yurteri, J.C.M. Marijnissen, Microfluid. Nanofluid. 9, 635–644 (2010)

    Article  Google Scholar 

  34. A.M. Gafian-Calvo, J. Davila, A. Barrero, J. Aerosol Sci. 28(2), 249–275 (1997)

    Article  Google Scholar 

  35. J. Stringer, B. Derby, Langmuir 26(12), 10365–10372 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0026163) and the research grant by Jeju National University in 2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-hyun Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahman, K., Ali, K., Muhammad, N.M. et al. Fine resolution drop-on-demand electrohydrodynamic patterning of conductive silver tracks on glass substrate. Appl. Phys. A 111, 593–600 (2013). https://doi.org/10.1007/s00339-012-7267-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7267-x

Keywords

Navigation