Skip to main content
Log in

Effect of pulse duration on plasmonic enhanced ultrafast laser-induced bubble generation in water

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Bubbles generated in water by focusing femtosecond and picosecond laser pulses in the presence of 100 nm gold nanoparticles have been investigated in the fluence range usually used for efficient cell transfection (100–200 mJ/cm2). Since resulting bubbles are at the nanoscale, direct observation using optical microscopy is not possible. An optical in-situ method has been developed to monitor the time-resolved variation in the extinction cross-section of an irradiated nanoparticle solution sample. This method is used to measure the bubbles lifetime and deduce their average diameter. We show that bubbles generated with femtosecond pulses (40–500 fs) last two times longer and are larger in average than those generated with picosecond pulses (0.5–5 ps). Controlling those bubble properties is necessary for optimizing off-resonance plasmonic enhanced ultrafast laser cell transfection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W. Walther, U. Stein, Drugs 60, 2 (2000)

    Article  Google Scholar 

  2. T.K. Wong, E. Neumann, Biochem. Biophys. Res. Commun. 107, 2 (1982)

    Article  Google Scholar 

  3. K. Shigekawa, W.J. Dower, BioTechniques 6, 8 (1988)

    Google Scholar 

  4. J. Weaver, Y. Chizmadzhev, Bioelectrochem. Bioenerg. 41, 135 (1996)

    Article  Google Scholar 

  5. F.L. Graham, J. Smiley, W.C. Russell, R. Nairn, J. Gen. Virol. 36, 1 (1977)

    Article  Google Scholar 

  6. T. Wilson, D. Papahadjopoulos, R. Taber, Cell 17, 1 (1979)

    Article  Google Scholar 

  7. R. Fraley, S. Subramani, P. Berg, D. Papahadjopoulos, J. Biol. Chem. 255, 21 (1980)

    Google Scholar 

  8. P.L. Felgner, Y.J. Tsai, L. Sukhu, C.J. Wheeler, M. Manthorpe, J. Marshall, S.H. Cheng, Ann. N.Y. Acad. Sci. 772, 126 (1995)

    Article  ADS  Google Scholar 

  9. J.L. Stilwell, D.M. McCarty, A. Negishi, R. Superfine, R.J. Samulski, J. Virol. 77, 23 (2003)

    Article  Google Scholar 

  10. U.K. Tirlapur, K. Konig, Nature 418, 6895 (2002)

    Article  Google Scholar 

  11. D. Stevenson, B. Agate, X. Tsampoula, P. Fischer, C.T.A. Brown, W. Sibbett, A. Riches, F. Gunn-Moore, K. Dholakia, Opt. Express 14, 16 (2006)

    Google Scholar 

  12. J. Baumgart, W. Bintig, A. Ngezahayo, S. Willenbrock, H.M. Escobar, W. Ertmer, H. Lubatschowski, A. Heisterkamp, Opt. Express 16, 5 (2008)

    Article  Google Scholar 

  13. V. Kohli, J.P. Acker, A.Y. Elezzabi, Biotechnol. Bioeng. 92, 7 (2005)

    Article  Google Scholar 

  14. E. Zeira, A. Manevitch, Z. Manevitch, E. Kedar, M. Gropp, N. Daudi, R. Barsuk, M. Harati, H. Yotvat, P.J. Troilo, T.G. Griffiths, S.J. Pacchione, D.F. Roden, Z. Niu, O. Nussbaum, G. Zamir, O. Papo, I. Hemo, A. Lewis, E. Galun, FASEB J. 21, 13 (2007)

    Article  Google Scholar 

  15. A. Vogel, N. Linz, S. Freidank, G. Paltauf, Phys. Rev. Lett. 100, 038102 (2008)

    Article  ADS  Google Scholar 

  16. A. Uchugonova, K. Konig, R. Bueckle, A. Isemann, G. Tempea, Opt. Express 16, 13 (2008)

    Article  Google Scholar 

  17. C. Yao, R. Rahmanzadeh, E. Endl, Z. Zhang, J. Gerdes, G. Huttmann, J. Biomed. Opt. 10, 6 (2005)

    Article  Google Scholar 

  18. D. Lapotko, Nanomedicine 4, 7 (2009)

    Article  Google Scholar 

  19. V.K. Pustalkov, A.S. Smetannikov, V.P. Zharov, Laser Phys. Lett. 11, 775 (2008)

    ADS  Google Scholar 

  20. J. Baumgart, L. Humbert, E. Boulais, R. Lachaine, J.J. Lebrun, M. Meunier, Biomaterials 33, 7 (2012)

    Article  Google Scholar 

  21. E. Boulais, R. Lachaine, M. Meunier, Nano Lett. (2012). doi:10.1021/nl302200w

    Google Scholar 

  22. E.M. Glinsky, S.D. Bailey, A.R. London, A.P. Amendt, M.A. Rubenchik, M. Strauss, Phys. Fluids 13, 20 (2001)

    Article  ADS  Google Scholar 

  23. E.C. Le Ru, P.G. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy (Elsevier, Amsterdam, 2009)

    Google Scholar 

  24. A. Vogel, G. Noack, G. Huttmann, G. Paltauf, Appl. Phys. B, Lasers Opt. 81, 8 (2005)

    Article  Google Scholar 

  25. L. Keldysh, Zh. Èksp. Teor. Fiz. 47, 5 (1965)

    Google Scholar 

  26. L. Hallo, A. Bourgeade, V. Tikhonchuk, C. Mezel, J. Breil, Phys. Rev. B, Condens. Matter Mater. Phys. 76, 2 (2007)

    Article  Google Scholar 

  27. N. Andreev, M. Veisman, V. Efremov, V. Fortov, High Temp. 41, 5 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Natural Science and Engineering Research Council (NSERC) and Le Fonds Quebecois de la Recherche sur la Nature et les Technologies (FQRNT) for financial support. The technical assistance by Yves Drolet is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Lachaine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lachaine, R., Boulais, E., Bourbeau, E. et al. Effect of pulse duration on plasmonic enhanced ultrafast laser-induced bubble generation in water. Appl. Phys. A 112, 119–122 (2013). https://doi.org/10.1007/s00339-012-7210-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7210-1

Keywords

Navigation