Skip to main content
Log in

Shape evolution, photoluminescence and degradation properties of novel Cu2O micro/nanostructures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Three kinds of novel cuprous oxide (Cu2O) micro/nanostructures are synthesized via a facile template-free hydrothermal method. Two factors are critical for the growth process of typical samples: the concentration of copper ions (Cu(II)) and the addition of Polyvinylpyrrolidone (PVP) as surfactant. It is found that the application of ethanol as solvent speeds up the reduction rate of Cu(II), and it promotes the aggregating of Cu2O nanocrystals at the preliminary stage to form irregular spherical structures. Photoluminescence (PL) properties of the three kinds of samples and their photocatalytic activities for degradation of Methyl Orange (MO) are also measured. The sample with higher concentration of copper vacancy (V Cu) defects has better photocatalytic ability, indicating that besides the morphology of Cu2O nano/microcrystals, the defects in crystalline structures can also influence their electrical characteristics, and thus change their photocatalytic activity. This provides a potential method to improve the photocatalytic performances of Cu2O crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F.C. Akkari, M. Kanzari, Phys. Status Solidi A 207, 1647 (2010)

    Article  ADS  Google Scholar 

  2. L. Liao, B. Yan, F. Hao, G.Z. Xing, J.P. Liu, B.C. Zhao, Z.X. Shen, T. Wu, L. Wang, J.T.L. Thong, C.M. Li, W. Huang, T. Yu, Appl. Phys. Lett. 94, 113106 (2009)

    Article  ADS  Google Scholar 

  3. P.H. Shih, J.Y. Ji, Y.R. Ma, S.Y. Wu, J. Appl. Phys. 103, 07B735 (2008)

    Article  Google Scholar 

  4. R.N. Briskman, Sol. Energy Mater. Sol. Cells 27, 361 (1992)

    Article  Google Scholar 

  5. J.Y. Ho, M.H. Huang, J. Phys. Chem. C 113, 14159 (2009)

    Article  Google Scholar 

  6. L. Guan, H. Pang, J. Wang, Q. Lu, J. Yin, F. Gao, Chem. Commun. 46, 7022 (2010)

    Article  Google Scholar 

  7. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature 407, 496 (2000)

    Article  ADS  Google Scholar 

  8. O. Akhavan, H. Tohidi, A.Z. Moshfegh, Thin Solid Films 517, 6700 (2009)

    Article  ADS  Google Scholar 

  9. H. Pang, F. Gao, Q.Y. Lu, Chem. Commun. 9, 1076 (2009)

    Article  Google Scholar 

  10. A. Ahmed, N. Gajbhiye, S. Namdeo, J. Solid State Chem. 184, 30 (2011)

    Article  ADS  Google Scholar 

  11. W.Q. Zhang, L. Shi, K.B. Tang, S.M. Dou, Eur. J. Inorg. Chem. 7, 1103 (2010)

    Article  Google Scholar 

  12. X. Lan, J.Y. Zhang, H. Gao, T.M. Wang, CrystEngComm 13, 633 (2011)

    Article  Google Scholar 

  13. C.H. Kuo, M.H. Huang, Nano Today 5, 106 (2010)

    Article  MathSciNet  Google Scholar 

  14. H.Y. Zhao, Y.F. Wang, J.H. Zeng, Cryst. Growth Des. 8, 3731 (2008)

    Article  Google Scholar 

  15. H.L. Xu, W.Z. Wang, W. Zhu, J. Phys. Chem. B 110, 13829 (2006)

    Article  Google Scholar 

  16. X. Liang, L. Gao, S. Yang, J. Sun, Adv. Mater. 21, 2068 (2009)

    Article  Google Scholar 

  17. Y. Tan, X. Xue, Q. Peng, H. Zhao, T. Wang, Y. Li, Nano Lett. 7, 3723 (2007)

    Article  ADS  Google Scholar 

  18. C. Lu, L. Qi, J. Yang, Adv. Mater. 17, 2562 (2005)

    Article  Google Scholar 

  19. Y. Chang, H.C. Zeng, Cryst. Growth Des. 4, 273 (2004)

    Article  Google Scholar 

  20. H. Zhang, Q. Zhu, Y. Zhang, Y. Wang, L. Zhao, B. Yu, Adv. Funct. Mater. 17, 2766 (2007)

    Article  Google Scholar 

  21. L. Zhang, H. Wang, ACS Nano 5, 3257 (2011)

    Article  Google Scholar 

  22. J. Xu, D. Xue, Acta Mater. 55, 2397 (2007)

    Article  Google Scholar 

  23. J.M. Zuo, M. Kim, M.O. Keeffe, J.C.H. Spence, Nature 401, 49 (1999)

    Article  ADS  Google Scholar 

  24. H. Raebiger, S. Lany, A. Zunger, Phys. Rev. B 76, 045209 (2007)

    Article  ADS  Google Scholar 

  25. C.H.B. Ng, W.Y. Fan, J. Phys. Chem. B 110, 20801 (2006)

    Article  Google Scholar 

  26. Y.M. Sui, W.Y. Fu, H.B. Yang, Y. Zeng, Y.Y. Zhang, Q. Zhao, Y.G. Li, X.M. Zhou, Y. Leng, M.H. Li, G.T. Zou, Cryst. Growth Des. 10, 99 (2010)

    Article  Google Scholar 

  27. M.H. Kim, B. Lim, J. Mater. Chem. 18, 4069 (2008)

    Article  Google Scholar 

  28. M.J. Siegfried, K.S. Choi, J. Am. Chem. Soc. 128, 10356 (2006)

    Article  Google Scholar 

  29. D.F. Zhang, H. Zhang, J. Mater. Chem. 19, 5220 (2009)

    Article  Google Scholar 

  30. Y.M. Luo, Z.M. Zheng, X.N.H. Mei, J. Cryst. Growth 310, 3372 (2008)

    Article  ADS  Google Scholar 

  31. A.L. Daltin, A. Addad, CrystEngComm 13, 3373 (2011)

    Article  Google Scholar 

  32. P. McFadyen, E. Matijevic, J. Colloid Interface Sci. 44, 95 (1973)

    Article  Google Scholar 

  33. H.R. Liu, W.F. Miao, Cryst. Growth Des. 9, 1733 (2009)

    Article  Google Scholar 

  34. W.L. Yu, K. Jiang, J.D. Wu, J. Gan, M. Zhu, Z.G. Hu, J.H. Chu, Phys. Chem. Chem. Phys. 13, 6211 (2011)

    Article  Google Scholar 

  35. H.S. Garranco, G.J. Diaz, A.E. Garcia, M.B. Garcia, M.G. Arellano, J.M. Juarez, G.R. Paredes, R.P. Sierra, J. Lumin. 129, 1483 (2009)

    Article  Google Scholar 

  36. N. Harukawa, S. Murakami, J. Lumin. 87, 1231 (2000)

    Article  Google Scholar 

  37. W.C. Wang, D.X. Wu, J. Appl. Phys. 107, 123717 (2010)

    Article  ADS  Google Scholar 

  38. J.W. Park, H. Jang, S. Kim, S.H. Choi, H. Lee, J. Appl. Phys. 110, 103503 (2011)

    Article  ADS  Google Scholar 

  39. K. Das, S.K. De, J. Lumin. 129, 1015 (2009)

    Article  Google Scholar 

  40. Y. Zhang, B. Deng, T.R. Zhang, D.M. Gao, A.W. Xu, J. Phys. Chem. C 114, 5073 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the NSF of China (Grant Nos. 60976014, 60976004, and 11074075), the Key Basic Research Project of Scientific and Technology Committee of Shanghai (Grant No. 09DJ1400200), and the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, H., Yu, K., Wang, Y. et al. Shape evolution, photoluminescence and degradation properties of novel Cu2O micro/nanostructures. Appl. Phys. A 108, 709–717 (2012). https://doi.org/10.1007/s00339-012-6954-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6954-y

Keywords

Navigation