Skip to main content
Log in

Role of Fe doping on structural and vibrational properties of ZnO nanostructures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this report, Raman and Fourier Transform Infrared (FTIR) measurements were carried out to study the phonon modes of pure and Fe doped ZnO nanoparticles. The nanoparticles were prepared by sol–gel technique at room temperature. The X-ray diffraction measurements reveal that the nanoparticles are in hexagonal wurtzite structure and doping makes the shrinkage of the lattice parameters, whereas there is no alteration in the unit cell. Raman measurements show both \(E_{2}^{\mathrm{low}}\) and \(E_{2}^{\mathrm{High}}\) optical phonon mode is shifted towards lower wave number with Fe incorporation and explained on the basis of force constant variation, stress measurements, respectively. In addition, Fe related local vibrational modes (LVM) were observed for higher concentration of Fe doping. FTIR spectra reveal a band at 444 cm−1 which is specific to E 1 (TO) mode; a red-shift of this mode in Fe doped samples and some surface phonon modes were observed. Furthermore, the observation of additional IR modes, which is considered to have an origin related to Fe dopant in the ZnO nanostructures, is also reported. These additional mode features can be regarded as an indicator for the incorporation of Fe ions into the lattice position of the ZnO nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Pinna, J.F. Hochepied, M. Niederberger, M. Gregg, Phys. Chem. Chem. Phys. 11, 3607 (2009)

    Google Scholar 

  2. Q. Li, S. Mahendra, D.Y. Lyon, L. Brunet, M.V. Liga, D. Li, P.J.J. Alvarez, Water Res. 42, 4591 (2008)

    Article  Google Scholar 

  3. Z.L. Wang, J. Phys., Condens. Matter 16, R829 (2004)

    Article  ADS  Google Scholar 

  4. T. Gruber, C. Kirchner, K. Thonke, R. Sauer, A. Waag, Phys. Status Solidi A 192, 166 (2002)

    Article  ADS  Google Scholar 

  5. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2001)

    Article  ADS  Google Scholar 

  6. Y. Liu, Z.H. Kang, Z.H. Chen, I. Shafiq, J.A. Zapien, I. Bello, W.J. Zhang, S.T. Lee, Cryst. Growth Des. 9, 3222 (2009)

    Article  Google Scholar 

  7. S. Ashok Kumar, S.M. Chen, Anal. Lett. 41, 141 (2008)

    Article  Google Scholar 

  8. M. Premanathan, K. Karthikeyan, K. Jeyasubramanian, G. Manivannan, Nanomedicine 7, 184 (2011)

    Google Scholar 

  9. C.L. Kuo, T.J. Kuo, M.H. Huang, J. Phys. Chem. B 109, 20115 (2005)

    Article  Google Scholar 

  10. B. Karthikeyan, T. Pandiyarajan, J. Lumin. 130, 2317 (2010)

    Article  Google Scholar 

  11. R.S. Yadav, A.C. Pandey, S.S. Sanjay, Chalcogenide Lett. 6, 233 (2009)

    Google Scholar 

  12. S. Cho, S.H. Jung, K.H. Lee, J. Phys. Chem. C 112, 12769 (2008)

    Article  Google Scholar 

  13. S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Prog. Mater. Sci. 50, 293 (2005)

    Article  Google Scholar 

  14. F. Pan, C. Song, X.J. Liu, Y.C. Yang, F. Zeng, Mater. Sci. Eng. R 62, 1 (2008)

    Article  Google Scholar 

  15. G. Gouadec, P. Colomban, Prog. Cryst. Growth Charact. Mater. 53, 1 (2007)

    Article  Google Scholar 

  16. G. Gouadec, P. Colomban, J. Raman Spectrosc. 38, 598 (2007)

    Article  ADS  Google Scholar 

  17. Y.M. Hu, C.Y. Wang, S.S. Lee, T.C. Han, W.Y. Chou, G.J. Chen, J. Raman Spectrosc. 42, 434 (2011)

    Article  ADS  Google Scholar 

  18. R.Y. Sato-Berru, A.V. Olmos, A.L.F. Osorio, S.S. Martınez, J. Raman Spectrosc. 38, 1073 (2007)

    Article  ADS  Google Scholar 

  19. R. Bhargava, P.K. Sharma, S. Kumar, A.C. Pandey, N. Kumar, J. Raman Spectrosc. (2011). doi:10.1002/jrs.2924

    Google Scholar 

  20. R. Cusco, E.A. Llado, J. Ibanez, L. Artus, J. Jimenez, B. Wang, M.J. Callahan, Phys. Rev. B 75, 165202 (2007)

    Article  ADS  Google Scholar 

  21. B. Yang, A. Kumar, N. Upia, P. Feng, R.S. Katiyar, J. Raman Spectrosc. 41, 88 (2010)

    Article  ADS  Google Scholar 

  22. Z. Bin, Z.S. Min, W.H. Wei, D. Zuliang, Chin. Sci. Bull. 53, 1639 (2008)

    Article  Google Scholar 

  23. F.I. Ezema, U.O.A. Nwankwo, Digest J. Nanomater. Biostruct. 6, 271 (2011)

    Google Scholar 

  24. A.I. Belogorokhov, A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, E.A. Kozhukhova, H.S. Kim, D.P. Norton, S.J. Pearton, Appl. Phys. Lett. 90, 192110 (2007)

    Article  ADS  Google Scholar 

  25. C. Suryanarayana, M. Grant Norton, X-Ray Diffraction: A Practical Approach (Plenum, New York, 1998), pp. 213

    Google Scholar 

  26. X.S. Wang, Z.C. Wu, J.F. Webb, Z.G. Liu, Appl. Phys. A 77, 561 (2003)

    Article  ADS  Google Scholar 

  27. B. Cheng, Y. Xiao, G. Wu, L. Zhang, Appl. Phys. Lett. 84, 416 (2004)

    Article  ADS  Google Scholar 

  28. B. Cheng, W. Sun, J. Jiao, B. Tian, Y. Xiao, S. Lei, J. Raman Spectrosc. 41, 1221 (2010)

    Article  ADS  Google Scholar 

  29. H.K. Yadav, K. Sreenivas, V. Gupta, R.S. Katiyar, J. Raman Spectrosc. 40, 381 (2009)

    Article  ADS  Google Scholar 

  30. M.A. Nusimovici, J.L. Birman, Phys. Rev. 156, 925 (1967)

    Article  ADS  Google Scholar 

  31. P.K. Giri, S. Bhattacharyya, D.K. Singh, R. Kesavamoorthy, B.K. Panigrahi, K.G.M. Nair, J. Appl. Phys. 102, 093515 (2007)

    Article  ADS  Google Scholar 

  32. S.B. Yahia, L. Znaidi, A. Kanaev, J.P. Petitet, Spectrochim. Acta A 71, 1234 (2008)

    Article  ADS  Google Scholar 

  33. A.J. Cheng, Y. Tzeng, H. Xu, S. Alur, Y. Wang, M. Park, T.H. Wu, C. Shannon, D.J. Kim, D. Wang, J. Appl. Phys. 105, 073104 (2009)

    Article  ADS  Google Scholar 

  34. X.B. Wang, C. Song, K.W. Geng, F. Zeng, F. Pan, J. Phys. D, Appl. Phys. 39, 4992 (2006)

    Article  ADS  Google Scholar 

  35. S. Onari, T. Arai, K. Kudo, Phys. Rev. B 16, 1717 (1977)

    Article  ADS  Google Scholar 

  36. B. Zou, W. Huang, M.Y. Han, S.F.Y. Li, X. Wu, Y. Zhang, J. Zhang, P. Wu, R. Wang, J. Phys. Chem. Solids 58, 1315 (1997)

    Article  ADS  Google Scholar 

  37. S. Ahmad, U. Riaz, A. Kaushik, J. Alam, J. Inorg. Organomet. Polym. 19, 355 (2009)

    Article  Google Scholar 

Download references

Acknowledgement

One of the author B. Karthikeyan would like to thank the Department of Science and Technology, Government of India, for sanctioning the fast track project (P.No. SR/FTP/PS-18/2008) to perform this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Karthikeyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandiyarajan, T., Udayabhaskar, R. & Karthikeyan, B. Role of Fe doping on structural and vibrational properties of ZnO nanostructures. Appl. Phys. A 107, 411–419 (2012). https://doi.org/10.1007/s00339-011-6755-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6755-8

Keywords

Navigation