Skip to main content
Log in

Influence of ambient gas and its pressure on the laser-induced breakdown spectroscopy and the surface morphology of laser-ablated Cd

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The ablation of Cd has been performed by employing Q-switched Nd: YAG 10 ns laser pulses with a central wavelength of 1064 nm for a pulsed energy of 200 mJ under various ambient environments of argon, air and helium. The optical emission spectroscopy of Cd plasma has been studied under different filling pressures of shield gases ranging from 5 torr to 760 torr using LIBS spectrometer system. The effect of different gases and their pressures on the intensity of spectral emission, electron temperature and density of the laser-produced plasma has been investigated. SEM analysis has been performed to investigate the dependence of surface morphological changes of an irradiated target on the nature and pressure of an ambient gas. A strong correlation has revealed the vital role of electron temperature and density of laser-induced plasma for the surface modification of Cd. These results strongly indicate that the nature and pressure of the ambient atmosphere is one of the controlling factors of the plasma characteristics, as well as the factors related to the laser energy absorption for surface modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N.M. Shaikh, S. Hafeez, M.A. Baig, Spectrochim. Acta B 62, 1311 (2007)

    Article  ADS  Google Scholar 

  2. Y. Iida, Spectrochim. Acta B 45(12), 1353 (1990)

    Article  ADS  Google Scholar 

  3. D.E. Kim, K.J. Yoo, H.K. Park, K.J. Oh, D.W. Kim, Appl. Spectrosc. 51(1), 22 (2003)

    Article  ADS  Google Scholar 

  4. S.L.G. Cristoforetti, V. Palleschi, A. Salvetti, E. Tognoni, Spectrochim. Acta B 59, 1907 (2004)

    Article  ADS  Google Scholar 

  5. G. Asimellis, S. Hamilton, A. Giannoudakos, M. Kompitsas, Spectrochim. Acta B 60, 1132 (2005)

    Article  ADS  Google Scholar 

  6. S.S. Harilal, C.V. Bindhu, V.P.N. Nampoori, C.P.G. Vallabhan, Appl. Phys. Lett. 72(2), 167 (1998)

    Article  ADS  Google Scholar 

  7. M.S. Yafan Zhao, C. Chen, J. Liu, J. Non-Cryst. Solids 354, 4000 (2008)

    Article  ADS  Google Scholar 

  8. B.R. Tull, J.E. Carey, M.A. Sheehy, C. Friend, E. Mazur, Appl. Phys. A 83(3), 341 (2006)

    Article  ADS  Google Scholar 

  9. N.M. Shaikh, B. Rashid, S. Hafeez, S. Mahmood, M. Saleem, M.A. Baig, J. Appl. Phys. 100, 073102 (2006)

    Article  ADS  Google Scholar 

  10. NIST Atomic Spectra Database, http//physics.nist.gov Kurucz output, in Atomic Spectral line database from R.L. Kurucz, CC ROM 23, http//physics.nist.gov Kurucz output

  11. S.N.T. Jagdish, P. Singh (eds.), Laser-induced Breakdown Spectroscopy (Amsterdam, Elsevier, 2007)

    Google Scholar 

  12. X. Zeng, X. Mao, S.S. Mao, J.H. Yoo, R. Greif, R.E. Russo, J. Appl. Phys. 95(3), 816 (2004)

    Article  ADS  Google Scholar 

  13. J.K. Thomas, W.B. Green, D.G. Sutton, J. Appl. Phys. 61(10), 4771 (1997)

    Google Scholar 

  14. L.J. Radziemski, D.A. Cremers, Laser-induced Plasmas and Applications (Marcel Dekker, New York, 1989)

    Google Scholar 

  15. K.A. Knight, N.L. Scherbarth, D.A. Cremers, M.J. Ferris, Appl. Spectrosc. 54(3), 331 (2000)

    Article  ADS  Google Scholar 

  16. G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, Spectrochim. Acta, Part B, At. Spectrosc. 59, 1907 (2004)

    Article  ADS  Google Scholar 

  17. P.T. Rumsby, J.W.M. Paul, Plasma Phys. 16, 247 (1974)

    Article  ADS  Google Scholar 

  18. M. Khaleeq-Ur-Rahman, K.A. Bhatti, M.S. Rafique, A. Latif, P. Lee, S. Mahmood, Laser Phys. 17(12), 1382 (2007)

    Article  ADS  Google Scholar 

  19. H.G. Rubahn, Laser Applications in Surface Science and Technology (Wiley, New York, 1996)

    Google Scholar 

  20. M.S. Rafique, M. Khaleeq-Ur-Rahman, T. Firdos, K. Aslam, M. Shahbaz Anwar, M. Imran, H. Latif, Laser Phys. 17(9), 1138 (2007)

    Article  ADS  Google Scholar 

  21. W.W. Duley, UV Lasers: Effects and Applications in Materials Science (Cambridge University Press, New York, 1996)

    Book  Google Scholar 

  22. R. Eason (ed.), Pulsed Laser Deposition of Thin Films (Wiley, New York, 2007)

    Google Scholar 

  23. J. Wilson, J.B. Hawks, Laser Principles and Applications (Prentice Hall, London, 1987)

    Google Scholar 

  24. L. Peter, R. Noll, Appl. Phys. B, Lasers Opt. 86(1), 159 (2007)

    ADS  Google Scholar 

  25. D.B. Chrisey, G.K. Hubler, Pulsed Laser Deposition of Thin Films (Wiley, New York, 1996)

    Google Scholar 

Download references

Acknowledgements

We acknowledge the Higher Education Commission of Pakistan for funding the project ‘Strengthening of Laser Lab Facilities at GC University Lahore’. We also acknowledge Ahsan Mushtaq and Director CASP for providing the SEM facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shazia Bashir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bashir, S., Farid, N., Mahmood, K. et al. Influence of ambient gas and its pressure on the laser-induced breakdown spectroscopy and the surface morphology of laser-ablated Cd. Appl. Phys. A 107, 203–212 (2012). https://doi.org/10.1007/s00339-011-6730-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6730-4

Keywords

Navigation