Skip to main content
Log in

Interference fringe-patterns association to defect-types in artwork conservation: an experiment and research validation review

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The paper is directed to all classes of optical inspection technologies that are causing a fringe pattern like output, such as interferometry, fringe projection, holography, speckle techniques. The explanations given here are also valid for incoherent fringe projection, moire, and short-coherent techniques, which are producing fringe-like output correlated with the surface structure and the surface change, respectively.

Identification of interference fringe patterns with defect type is a long-standing engineering problem with the ambiguities in cause-effect relation dominating the Cultural Heritage structural diagnosis. The ambiguities refer to fringe-pattern formation in regard to a hidden defect cause in the subsurface and the effect on the surface of the size or depth of the defect. In order to solve the concerned ambiguities, a review is made here to be confirmed a correlation of fringe pattern appearance to defect cause. The methodology is employed in the paper to achieve a generalized description of fringe morphology for a common type of inner defect as interlayer de-cohesion termed in art conservation as detachment and crack.

The objective is to provide the required concept and procedure through which the validation of any defect-indicative fringe-pattern can serve as a direct-visual-control of structural condition in artwork examination. In this context, theoretical and experimental results starting from simulation algorithms, through knowledge based experiments and experimental verification to correlation procedures and mathematical analysis are combined to allow fringe pattern generalized validation.

The result allows performing by means of modern optical metrology direct artwork documentation of structural diagnosis in complex art conservation problems. It helps to utilize it in other research objectives targeting in automated defect-recognition and multisensory technology. It helps to advance theoretical and practical routines in everyday practices of art conservation applications, to confirm the direct fringe pattern concept in a new diagnostic field, and develop associations to cause-effect relations in other art conservation problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. R.K. Erf, Holographic Nondestructive Testing (Academic Press, London, 1974)

    Google Scholar 

  2. C.M. Vest, Holographic Interferometry (Wiley, New York, 1979)

    Google Scholar 

  3. P. Hariharan, Optical Holography (Cambridge University Press, Cambridge, 1984)

    Google Scholar 

  4. K.A. Stetson, R.L. Powell, Hologram interferometry. J. Opt. Soc. Am. 55, 1570A (1965)

    Article  Google Scholar 

  5. T. Kreis, Handbook of Holographic Interferometry (Wiley-VCH, Weinheim, 2005)

    Google Scholar 

  6. P.K. Rastogi, Digital Speckle Pattern Interferometry and Related Techniques (Wiley, New York, 2001)

    Google Scholar 

  7. K.A. Haines, B.P. Hildebrand, Surface deformation measurement using the wavefront reconstruction technique. Appl. Opt. 5, 595–602 (1966)

    Article  ADS  Google Scholar 

  8. W. Osten, Digital image processing for optical metrology, in Handbook of Experimental Solid Mechanics, ed. by W.N. Sharpe (Springer, Berlin, 2008), pp. 481–563

    Chapter  Google Scholar 

  9. V. Tornari, V. Zafiropulos, N.A. Vainos, C. Fotakis, W. Osten FORTH/IESL, F. Elandaloussi, A holographic systematic approach to alleviate major dillemas in museum operation, in EVA 98 Conference on Electronic Imaging and the Visual Arts, Berlin, 13–16 November (1998)

    Google Scholar 

  10. V. Tornari, A. Bonarou, E. Esposito, W. Osten, M. Kalms, N. Smyrnakis, S. Stasinopulos, Laser based systems for the structural diagnostic of artworks: an application to XVII century Byzantine icons, in SPIE 2001, Munich, 18–22 June, vol. 4402 (2001)

    Google Scholar 

  11. K.D. Hinsch, T. Frice-Begermann, G. Gulker, K. Wolf, Speckle correlation for the analysis of random processes at rough surfaces. Opt. Lasers Eng. 33, 87–105 (2000)

    Article  Google Scholar 

  12. G. Gulker, K. Hinsch, C. Holscher, A. Kramer, H. Neunaber, In-situ application of electronic speckle pattern interferometry (ESPI) in the investigation of stone decay. Proc. SPIE 1162, 156–167 (1990)

    ADS  Google Scholar 

  13. S.G. Schirripa, D. Ambrosini, D. Paoletti, Optical methods for mosaic diagnostics. J. Opt. 29, 394–400 (1998)

    Article  ADS  Google Scholar 

  14. P.M. Boone, V.B. Markov, Examination of museum objects by means of video holography. Stud. Conserv. 40, 103–109 (1995)

    Article  Google Scholar 

  15. G. Gulker, K.D. Hinsch, A. Kraft, Deformation monitoring on polychrome Chinese terracotta warriors using TV-holography, in LACONA IV (1998)

    Google Scholar 

  16. W. Osten, Optical Inspection of Microsystems (Taylor & Francis, London, 2007)

    Google Scholar 

  17. W. Osten, W. Juptner, U. Mieth, Knowledge assisted evaluation of fringe patterns for automatic fault detection. In: SPIE Interferometry VI: Applications 2004, 256–268 (1993)

    Google Scholar 

  18. Z. Fuzessy, Simulation and Experiment in Laser Metrology (Academie Verlag, Berlin, 1996), pp. 209–216

    Google Scholar 

  19. Z. Füzessy, W. Jüptner, W. Osten (eds.), Simulation and experiment in laser metrology, in Proc. of the International Symposium on Laser Application in Precision Measurement, Balatonfüred, 3–6 June 1996 (Akademie Verlag, Berlin, 1996)

  20. A. Twitto, J. Shamir, A. Bekker, A. Notea, Detection of internal defects using phase-shifting holographic-interferometry. NDT E Int. 29(3), 163–173 (1996)

    Article  Google Scholar 

  21. U. Mieth, W. Osten, W. Juptner, Investigations on the appearance of materials faults in holographic interferograms, in Fringe 2001 (Amsterdam, Elsevier, 2001), pp. 163–172

    Google Scholar 

  22. U. Mieth, W. Osten, W. Juptner, Knowledge Assisted Fault Detection Based on Line Features of Skeletons. Physical Research, vol. 19 (Akademie Verlag, Berlin, 1993), pp. 367–373

    Google Scholar 

  23. W. Osten, F. Elandaloussi, U. Mieth, The BIAS Fringe Processor, a Useful Tool for the Automatic Processing of Fringe Patterns in Optical Metrology. Akademie Verlag Series in Optical Metrology (Akademie Verlag, Bremen, 1998)

    Google Scholar 

  24. G. Pedrini, H.J. Tiziani, Y. Zou, Digital double-pulse TV holography. Opt. Lasers Eng. 26, 199–219 (1997)

    Article  Google Scholar 

  25. C. Thizy, M. Georges, M. Doulgeridis, E. Kouloumpi, T. Green, S. Hackney, V. Tornari, Role of dynamic holography with photorefractive crystals in a multifunctional sensor for the detection of signature features in movable cultural heritage, in Proceedings of the SPIE Conference. O3A: Optics for Arts, Architecture, and Archaeology, vol. 6618, paper 6618-28, Munich, June (2007)

    Google Scholar 

  26. M.P. Georges, V.S. Scauflaire, P.C. Lemaire, Compact and portable holographic camera using photorefractive crystals. Application in various metrological problems. Appl. Phys. B 72, 761–765 (2001)

    Article  ADS  Google Scholar 

  27. M. Georges, C. Thizy, V. Scauflaire, S. Ryhon, G. Pauliat, P. Lemaire, G. Roosen, Holographic interferometry with photorefractive crystals: review of applications and advances techniques, in Proc. SPIE. Speckle Metrology, vol. 4933 (2003), pp. 250–255

    Chapter  Google Scholar 

  28. C. Fotakis, D. Anglos, V. Zafiropulos, S. Georgiou, V. Tornari, Lasers in the preservation of cultural heritage, in Principles and Applications, ed. by R.G.W. Brown, E.R. Pike (Taylor & Francis, New York, 2006)

    Google Scholar 

  29. U. Mieth, Ph.D. BIAS Bremen, 2005

  30. W. Osten, Digital image processing for optical metrology, in Handbook of Experimental Solid Mechanics, ed. by W.N. Sharpe (Springer, Berlin, 2008), pp. 481–563

    Chapter  Google Scholar 

  31. EU-Projekt “Laserart”: non invasive laser measurement for diagnosing the state of conservation of frescoes and wooden icons, SMT4-CT96-2062

  32. EU-Projekt “LaserACT”: laser multitask non destructive technology in conservation diagnostic procedures, ENVK4-CT-2002-00096

  33. V. Tornari, A. Bonarou, P. Castellini, E. Esposito, W. Osten, M. Kalms, N. Smyrnakis, S. Stasinopulos, Laser-based systems for the structural diagnostic of artwork: an application to XVII-century Byzantine icons. Proc. SPIE 4402, 172 (2001). doi:10.1117/12.445660

    Article  ADS  Google Scholar 

  34. E. Tsiranidou, V. Tornari et al., Time-dependent defect detection by combination of holographic tools, in Lasers in the Conservation of Artwork. Lacona VI Proc, ed. by J. Nimmrichter, W. Kautek (Springer, Berlin, 2007), pp. 611–620

    Chapter  Google Scholar 

  35. EU-Projekt; MultiEncode: multifunctional encoding system for assessment of movable cultural heritage. SSPI-006427, 2005–2008, http://www.iesl.forth.gr/projects/multiencode/indes.html

  36. V. Tornari et al., Multifunctional encoding system for assessment ov movable cultural heritage, in Proc. Fringe 2009, ed. by W. Osten, M. Kujawinska (Springer, Heidelberg, 2009), pp. 680–687

    Google Scholar 

  37. R. Groves, W. Osten, M. Dulgeridis et al., Shearography as part of a multifunctional sensor for the detection of signature features in movable cultural heritage. Proc. SPIE 6618, 661810-1 (2007)

    Google Scholar 

  38. R. Groves, D. Derauw, C. Thizy, I. Alexeenko, W. Osten, M. Georges, V. Tornari, Automated phase map referencing against historic phase map data, in Fringe 2009 (Springer, Heidelberg, 2009), pp. 192–196

    Google Scholar 

  39. M. Kalms, W. Osten, Mobile shearography system fort the inspection of aircraft and automotive components. Opt. Eng. 42(5), 1188–1196 (2003)

    Article  ADS  Google Scholar 

  40. R. Groves, B. Pradarutti, E. Kouloumpi, G. Notni, W. Osten, 2D and 3D non-destructive evaluation of a wooden panel painting using shearography and terahertz imaging. NDT E Int. 42(6), 543–549 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This review is based on many different experiments and theoretical studies performed in the past years from the author and other colleagues and much of this work may have been used partly in other publications. The work was partially supported in the framework of the EU and National projects and by the TMR ULF Laser Facility and experimental work was carried out at the holography laboratories of FORTH-IESL. The numerical simulation was performed at BIAS, Bremen, and special thanks for their cooperation and stimulating discussions go to Prof. Wolfgang Osten, currently at ITO, Stuttgart- and to Dr. Ulrike Mieth and her Ph.D. on mathematical study of fringe patterns. National gallery of Athens and Dr. Michalis Doulgeridis are specially acknowledged for contribution of Rafael painting shown in this article. Special thanks also to Benaki Museum of Athens for providing the samples used in the development of the defect detection association of the holographic techniques in IESL holography lab throughout the years. The research was also partially supported from EC projects LaserACT FP6 EVK4-CT-2002-00096 (2002–2005), and Multiencode FP6 SSPI-CTOO-6427 (2005–2008). Thanks to all colleagues from Optical metrology field for the fruitful cooperation over the years, Dr. March Georges, Dr. Gerd Gulker, Prof. Hinsch, Prof. Werner Juptner, Prof. Pierre Boone, Prof. Graham Saxby, and many others.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivi Tornari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tornari, V., Tsiranidou, E. & Bernikola, E. Interference fringe-patterns association to defect-types in artwork conservation: an experiment and research validation review. Appl. Phys. A 106, 397–410 (2012). https://doi.org/10.1007/s00339-011-6695-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6695-3

Keywords

Navigation