Skip to main content

Advertisement

Log in

Polarization and piezoelectricity in polymer films with artificial void structure

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Laminated polymer-film systems with well-defined void structures were prepared from fluoroethylenepropylene (FEP) and polytetrafluoroethylene (PTFE) layers. First the PTFE films were patterned and then fusion-bonded with the FEP films. The laminates were subjected to either corona or contact charging in order to obtain the desired piezoelectricity. The build-up of the “macro-dipoles” in the laminated films was studied by recording the electric hysteresis loops. The resulting electro-mechanical properties were investigated by means of dielectric resonance spectroscopy (DRS) and direct measurements of the stress-strain relationship. Moreover, the thermal stability of the piezoelectric d 33 coefficient was investigated at elevated temperatures and via thermally stimulated discharge (TSD) current measurements in short circuit. For 150 μm thick laminated films, consisting of one 25 μm thick PTFE layer, two 12.5 μm thick FEP layers, and a void of 100 μm height, the critical voltage necessary for the build-up of the “macro-dipoles” in the inner voids was approximately 1400 V, which agrees with the value calculated from the Paschen Law. A quasi-static piezoelectric d 33 coefficient up to 300 pC/N was observed after corona charging. The mechanical properties of the film systems are highly anisotropic. At room temperature, the Young’s moduli of the laminated film system are around 0.37 MPa in the thickness direction and 274 MPa in the lateral direction, respectively. Using these values, the theoretical shape anisotropy ratio of the void was calculated, which agrees well with experimental observation. Compared with films that do not exhibit structural regularity, the laminates showed improved thermal stability of the d 33 coefficients. The thermal stability of d 33 can be further improved by pre-aging. E.g., the reduction of the d 33 value in the sample pre-aged at 150°C for 5 h was less than 5% after annealing for 30 h at a temperature of 90°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Kirjavainen, US Patent, 4, 654,546 (31 Mar. 1987)

  2. A. Savolainen, K. Kirjavainen, J. Macromol. Sci. Chem. A 26, 583 (1989)

    Article  Google Scholar 

  3. S. Bauer, R. Gerhard(-Multhaupt), G.M. Sessler, Phys. Today 57(2), 37 (2004)

    Article  Google Scholar 

  4. R. Gerhard(-Multhaupt), IEEE Trans. Dielectr. Electr. Insul. 9, 850 (2002)

    Article  Google Scholar 

  5. S. Bauer, IEEE Trans. Dielectr. Electr. Insul. 13, 953 (2006)

    Google Scholar 

  6. X. Qiu, J. Appl. Phys. 108, 011101 (2010)

    Article  ADS  Google Scholar 

  7. W. Künstler, Z. Xia, T. Weinhold, A. Pucher, R. Gerhard (-Multhaupt), Appl. Phys. A 70, 5 (2000)

    Article  ADS  Google Scholar 

  8. G.S. Neugschwandtner, R. Schwödiauer, S. Bauer-Gogonea, S. Bauer, Appl. Phys. A 70, 1 (2000)

    Article  ADS  Google Scholar 

  9. M. Paajanen, M. Wegener, R. Gerhard(-Multhaupt), J. Phys. D: Appl. Phys. 34, 2482 (2001)

    Article  ADS  Google Scholar 

  10. X. Zhang, J. Hillenbrand, G.M. Sessler, J. Phys. D: Appl. Phys. 37, 2146 (2004)

    Article  ADS  Google Scholar 

  11. M. Wegener, W. Wirges, R. Gerhard(-Multhaupt), M. Dansachmueller, R. Schwoediauer, S. Bauer, M. Paajanen, H. Minkkinen, J. Raukola, Appl. Phys. Lett. 84, 392 (2004)

    Article  ADS  Google Scholar 

  12. R.A.C. Altafim, H.C. Basso, R.A.P. Altafim, L. Lima, C.V. de Aquimo, L. Goncalves Neto, R. Gerhard(-Multhaupt), IEEE Trans. Dielectr. Electr. Insul. 13, 979 (2006)

    Google Scholar 

  13. X. Zhang, J. Hillenbrand, G.M. Sessler, Appl. Phys. A 84, 139 (2006)

    Article  ADS  Google Scholar 

  14. X. Zhang, J. Hillenbrand, G.M. Sessler, J. Appl. Phys. 101, 054114 (2007)

    Article  ADS  Google Scholar 

  15. Z. Hu, H. Von Seggern, J. Appl. Phys. 99, 024102 (2006)

    Article  ADS  Google Scholar 

  16. J. Huang, X. Zhang, Z. Xia, X. Wang, J. Appl. Phys. 103, 084111 (2008)

    Article  ADS  Google Scholar 

  17. E. Saarimäki, M. Paajanen, A. Savijärvi, H. Minkkinen, M. Wegener, O. Voronina, R. Schulze, W. Wirges, R. Gerhard (-Multhaupt), IEEE Trans. Dielectr. Insul. 13, 963 (2006)

    Google Scholar 

  18. W. Wirges, M. Wegener, O. Voronina, L. Zirkel, R. Gerhard (-Multhaupt), Adv. Funct. Mater. 17, 324 (2007)

    Article  Google Scholar 

  19. P. Fang, M. Wegener, W. Wirges, R. Gerhard, Appl. Phys. Lett. 90, 192908 (2007)

    Article  ADS  Google Scholar 

  20. J. Hillenbrand, G.M. Sessler, J. Appl. Phys. 103, 074103 (2008)

    Article  ADS  Google Scholar 

  21. X. Zhang, X. Wang, G. Cao, D. Pan, Z. Xia, Appl. Phys. A 97, 859 (2009)

    Article  ADS  Google Scholar 

  22. X. Zhang, G. Cao, Z. Sun, Z. Xia, J. Appl. Phys. 108, 064113 (2010)

    Article  ADS  Google Scholar 

  23. R.A.P. Altafim, X. Qiu, W. Wirges, R. Gerhard, R.A.C. Altafim, H.C. Basso, W. Jenninger, J. Wagner, J. Appl. Phys. 106, 014106 (2009)

    Article  ADS  Google Scholar 

  24. G.M. Sessler, J. Hillenbrand, Appl. Phys. Lett. 75, 3405 (1999)

    Article  ADS  Google Scholar 

  25. M. Paajanen, J. Lekkala, K. Kirjavainen, Sens. Actuators 84, 95 (2000)

    Article  Google Scholar 

  26. R. Schwödiauer, I. Graz, S. Bauer, IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conference (2004), pp. 134–137

    Google Scholar 

  27. W. Wegener, S. Bauer, Chem. Phys. Chem. 6, 1014 (2005)

    Article  Google Scholar 

  28. S. Zhukov, H. von Seggern, J. Appl. Phys. 102, 044109 (2007)

    Article  ADS  Google Scholar 

  29. X. Qiu, A. Mellinger, M. Wegener, W. Wirges, R. Gerhard, J. Appl. Phys. 101, 104112 (2007)

    Article  ADS  Google Scholar 

  30. X. Qiu, L. Holländer, R.F. Suárez, W. Wirges, R. Gerhard, Appl. Phys. Lett. 97, 072905 (2010)

    Article  ADS  Google Scholar 

  31. J. Hillenbrand, G.M. Sessler, J. Acoust. Soc. Am. 116, 3267 (2004)

    Article  ADS  Google Scholar 

  32. I. Graz, M. Kaltenbrunner, C. Keplinger, R. Schwödiauer, S. Bauer, S.P. Lacour, S. Wagner, Appl. Phys. Lett. 89, 073501 (2006)

    Article  ADS  Google Scholar 

  33. G. Buchberger, R. Schwödiauer, S. Bauer, Appl. Phys. Lett. 92, 123511 (2008)

    Article  ADS  Google Scholar 

  34. Z. An, M. Zhao, J. Yao, Y. Zhang, Z. Xia, Appl. Phys. A 95, 801 (2009)

    Article  ADS  Google Scholar 

  35. G.S. Neugschwandtner, R. Schwödiauer, M. Vieytes, S. Bauer-Gogonea, S. Bauer, J. Hillenbrand, R. Kressmann, G.M. Sessler, M. Paajanen, J. Lekkala, Appl. Phys. Lett. 77, 3827 (2000)

    Article  ADS  Google Scholar 

  36. A. Mellinger, IEEE Trans. Dielectr. Electr. Insul. 10, 842 (2003)

    Article  Google Scholar 

  37. J. Hillenbrand, G.M. Sessler, IEEE Trans. Dielectr. Electr. Insul. 11, 72 (2004)

    Article  Google Scholar 

  38. J. Hillenbrand, G.M. Sessler, IEEE Trans. Dielectr. Electr. Insul. 7, 537 (2000)

    Article  Google Scholar 

  39. M. Paajanen, H. Välimäki, J. Lekkala, J. Electrost. 48, 193 (2000)

    Article  Google Scholar 

  40. F. Paschen, Über die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz (“On the potential difference required for sparking in air, hydrogen and carbon dioxide at various pressures”). Ann. Phys. 273(5), 69 (1889)

    Article  Google Scholar 

  41. M. Wegener, M. Paajanen, W. Wirges, R. Gerhard(-Multhaupt), Proc., IEEE 11th Intern. Symp. Electrets (2002), pp. 54–57

    Book  Google Scholar 

  42. M. Lindner, S. Bauer-Gogonea, S. Bauer, M. Paajanen, J. Raukola, J. Appl. Phys. 91, 5283 (2002)

    Article  ADS  Google Scholar 

  43. S. Zhukov, H. von Seggern, J. Appl. Phys. 101, 084106 (2007)

    Article  ADS  Google Scholar 

  44. X. Qiu, A. Mellinger, W. Wirges, R. Gerhard, Appl. Phys. Lett. 91, 132905 (2007)

    Article  ADS  Google Scholar 

  45. L.J. Gibson, M.F. Ashby, Cellular Solids, 2nd edn. (Cambridge University Press, New York, 1999)

    Google Scholar 

  46. J.G. Drobny, Technology of Fluoropolymers, 2nd edn. (CRC Press, Boca Raton, 2009)

    Google Scholar 

  47. G.M. Sessler (ed.), Electrets, 3rd edn., vol. I (Laplacian Press, Morgan Hill, 1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqing Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Z., Zhang, X., Xia, Z. et al. Polarization and piezoelectricity in polymer films with artificial void structure. Appl. Phys. A 105, 197–205 (2011). https://doi.org/10.1007/s00339-011-6481-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6481-2

Keywords

Navigation