Skip to main content
Log in

Electrophoresis and orientation of multiple wall carbon nanotubes in polymer solution

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper contains an in-depth analysis of the electrophoresis of multi-wall carbon nanotubes (MWNTs) in liquid epoxy where electrophoresis experiments under DC and AC fields were carried out for five different types of multi-wall carbon nanotubes (MWNTs). DC electrophoresis and particle image velocimetry were used to determine the electrophoretic particle mobility and zeta potential, where the MWNTs with the largest outer diameter and length led to the highest mobility values. The orientation and agglomeration of MWNTs into “striation” lines under AC electrophoresis were investigated by analysing the hue, saturation and intensity of the transmitted polarised light under microscope, following a schedule of step-wise applied voltage in the range of 0 to 100 V. Plots of hue and saturation as a function of the applied voltage were used to assess the degree of orientation and density of orientated MWNT structures, respectively, and to determine an optimum AC electric field value for the orientation of a specific MWNT type by electrophoresis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.W. Wang, T.C. Hsu, C.H. Wang, Eur. Phys. J., Appl. Phys. 42(3), 241–246 (2008)

    Article  MATH  ADS  Google Scholar 

  2. Q. Wang, J.F. Dai, W.X. Li, Z.Q. Wei, J.L. Jiang, Compos. Sci. Technol. 68(7–8), 1644–1648 (2008)

    Article  Google Scholar 

  3. T. Kimura, H. Ago, M. Tobita, S. Ohshima, M. Kyotani, M. Yumura, Adv. Mater. 14, 1380–1383 (2002)

    Article  Google Scholar 

  4. M.J. Casavant, D.A. Walters, J.J. Schmidt, R.E. Smalley, J. Appl. Phys. 93(4), 2153–2156 (2003)

    Article  ADS  Google Scholar 

  5. Z.H. Guo, J.A. Wood, K.L. Huszanik, X.H. Yan, A. Docoslis, J. Nanosci. Nanotechnol. 7(12), 4322–4332 (2007)

    Article  Google Scholar 

  6. K. Yamamoto, S. Akita, Y. Nakayama, J. Phys. D, Appl. Phys. 31(8), L34–L36 (1998)

    Article  ADS  Google Scholar 

  7. C. Ma, Y.F. Zhu, X.Z. Yang, L.J. Ji, C. Zhang, J. Liang, J. Dispers. Sci. Technol. 29(4), 502–507 (2008)

    Article  Google Scholar 

  8. J.S. Choi, Y. Kwak, S. Kim, J. Micromech. Microeng. 18(3), 035008 (2008)

    Article  ADS  Google Scholar 

  9. Y.F. Zhu, C. Ma, W. Zhang, R.P. Zhang, N. Kozatkar, J. Liang, J. Appl. Phys. 105, 054319 (2009)

    Article  ADS  Google Scholar 

  10. T. Prasse, L. Flandin, K. Schulte, W. Bauholer, Appl. Phys. Lett. 72(22), 1–3 (1998)

    Article  Google Scholar 

  11. C.A. Martin, J.K.W. Sandler, AH Windle, M.-K. Schwarz, W. Bauhofer, K. Schulte, M.S.P. Shaffer, Polymer 46, 877–886 (2005)

    Article  Google Scholar 

  12. S. Moynihan, P. Lovera, D. O’Carroll, D. Iacopino, G. Redmond, Adv. Mater. 20(13), 2497–2502 (2008)

    Article  Google Scholar 

  13. K. Bubka, H. Gnewuch, M. Hemstead, Appl. Phys. Lett. 71(14), 1906–1909 (1997)

    Article  ADS  Google Scholar 

  14. R. Perez, S. Banda, Z. Qunales, J. Appl. Phys. 103, 074302 (2008)

    Article  ADS  Google Scholar 

  15. S. Pei, J. Du, Y. Zeng, C. Liu, H.M. Cheng, Nanotechnology 20, 235707 (2009)

    Article  ADS  Google Scholar 

  16. G. Brezesinski, H.-J. Mogel, Grenzflachen und Kolloide (Spectrum Akademischer, München, 1993)

    Google Scholar 

  17. S. Montserrat, F. Roman, P. Colomer, J. Appl. Polym. Sci. 102, 558–563 (2006)

    Article  Google Scholar 

  18. O. Moudam, T. Andrews, C. Lekakou, J.F. Watts, G. Reed, Nanotechnology, in press

  19. N. Mureau, E. Mendoza, S.R.P. Silva, K.F. Hoettges, M.P. Hughes, Appl. Phys. Lett. 88, 243109-1-3 (2006)

    Article  ADS  Google Scholar 

  20. C.A. Martin, J.K.W. Sandler, M.S.P. Shaffer, M.-K. Schwarz, W. Bauhofer, K. Schulte, A.H. Windle, Comput. Sci. Technol. 64(15), 2309–2316 (2004)

    Article  Google Scholar 

  21. C. Lekakou, I. Kontodimopoulos, A.K. Murugesh, Y.L. Chen, D.A. Jesson, J. Watts, P.A. Smith, Polym. Eng. Sci. 48(2), 216–222 (2008)

    Article  Google Scholar 

  22. Q.H. Hoang, N. Toy, E. Savory, in Flow Visualization VII: Proceedings of 7th International Symposium on Flow Visualisation, ed. by J.P. Crowder (1995), pp. 552–557

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Lekakou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murugesh, A.K., Uthayanan, A. & Lekakou, C. Electrophoresis and orientation of multiple wall carbon nanotubes in polymer solution. Appl. Phys. A 100, 135–144 (2010). https://doi.org/10.1007/s00339-010-5562-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5562-y

Keywords

Navigation