Skip to main content
Log in

The role of diffusion in broadband infrared absorption in chalcogen-doped silicon

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Sulfur doping of silicon beyond the solubility limit by femtosecond laser irradiation leads to near-unity broadband absorption of visible and infrared light and the realization of silicon-based infrared photodetectors. The nature of the infrared absorption is not yet well understood. Here we present a study on the reduction of infrared absorptance after various anneals of different temperatures and durations for three chalcogens (sulfur, selenium, and tellurium) dissolved into silicon by femtosecond laser irradiation. For sulfur doping, we irradiate silicon in SF6 gas; for selenium and tellurium, we evaporate a film onto the silicon and irradiate in N2 gas; lastly, as a control, we irradiated untreated silicon in N2 gas. Our analysis shows that the deactivation of infrared absorption after thermal annealing is likely caused by dopant diffusion. We observe that a characteristic diffusion length—common to all three dopants—leads to the reduction of infrared absorption. Using diffusion theory, we suggest a model in which grain size of the resolidified surface layer can account for this characteristic diffusion length, indicating that deactivation of infrared absorptance may be caused by precipitation of the dopant at the grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.R. Vydyanath, W.J. Helm, J.S. Lorenzo, S.T. Hoelke, Infrared Phys. 19, 93 (1979)

    Article  ADS  Google Scholar 

  2. N. Sclar, J. Appl. Phys. 52, 5207 (1981)

    Article  ADS  Google Scholar 

  3. J.E. Carey, C.H. Crouch, M. Shen, E. Mazur, Opt. Lett. 30, 1773 (2005)

    Article  ADS  Google Scholar 

  4. Y.A. Astrov, L.M. Portsel, A.N. Lodygin, V.B. Shuman, E.V. Beregulin, in Gettering and Defect Engineering in Semiconductor Technology XI. Solid State Phenomena, vols. 108–109, pp. 401–406 (2005)

  5. X. Zhang, M. Kleverman, J. Olajos, Semicond. Sci. Technol. 14, 1076 (1999)

    Article  ADS  Google Scholar 

  6. A. Henry, J. Svensson, E. Janzen, B. Monemar, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 4, 261 (1989)

    Google Scholar 

  7. T.G. Brown, D.G. Hall, Appl. Phys. Lett. 49, 245 (1986)

    Article  ADS  Google Scholar 

  8. T.G. Brown, P.L. Bradfield, D.G. Hall, Appl. Phys. Lett. 51, 1585 (1987)

    Article  ADS  Google Scholar 

  9. M.A. Lourenco, M. Milosavljevic, S. Galata, M.S.A. Siddiqui, G. Shao, R.M. Gwilliam, K.P. Homewood, Vacuum 78, 551 (2005)

    Article  Google Scholar 

  10. J. Bao, M. Tabbal, T. Kim, S. Charnvanichborikarn, J.S. Williams, M.J. Aziz, F. Capasso, Opt. Express 15 (2007)

  11. M. Thiagarajan, K. Iyakutti, E. Palaniyandi, Phys. Status Solidi B-Basic Res. 205, 553 (1998)

    Article  ADS  Google Scholar 

  12. H.G. Grimmeiss, E. Janzen, H. Ennen, O. Schirmer, J. Schneider, R. Worner, C. Holm, E. Sirtl, P. Wagner, Phys. Rev. B 24, 4571 (1981)

    Article  ADS  Google Scholar 

  13. E. Janzen, R. Stedman, G. Grossmann, H.G. Grimmeiss, Phys. Rev. B 29, 1907 (1984)

    Article  ADS  Google Scholar 

  14. E. Janzen, H.G. Grimmeiss, A. Lodding, C. Deline, J. Appl. Phys. 53, 7367 (1982)

    Article  ADS  Google Scholar 

  15. R.G. Wilson, J. Appl. Phys. 55, 3490 (1984)

    Article  ADS  Google Scholar 

  16. A.A. Taskin, B.A. Zaitsev, V.I. Obodnikov, E.G. Tishkovskii, Semiconductors 34, 312 (2000)

    Article  ADS  Google Scholar 

  17. F. Rollert, N.A. Stolwijk, H. Mehrer, Appl. Phys. Lett. 63, 506 (1993)

    Article  ADS  Google Scholar 

  18. F. Rollert, N.A. Stolwijk, H. Mehrer, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 18, 107 (1993)

    Google Scholar 

  19. P.L. Gruzin, S.V. Zemskii, A.D. Bulkin, N.M. Makarov, Sov. Phys. Semiconduct. 7, 1241 (1974)

    Google Scholar 

  20. R.O. Carlson, R.N. Hall, E.M. Pell, J. Phys. Chem. Solids 8, 81 (1959)

    Article  ADS  Google Scholar 

  21. N.S. Zhdanovich, Y.I. Kozlov, Sov. Phys. Semiconduct. 10, 1102 (1976)

    Google Scholar 

  22. H.R. Vydyanath, J.S. Lorenzo, F.A. Kroger, J. Appl. Phys. 49, 5928 (1978)

    Article  ADS  Google Scholar 

  23. H. Stumpel, M. Vorderwulbecke, J. Mimkes, Appl. Phys. A-Mater. Sci. Process. 46, 159 (1988)

    Article  ADS  Google Scholar 

  24. C.S. Kim, M. Sakata, Jpn. J. Appl. Phys. 18, 247 (1979)

    Article  ADS  Google Scholar 

  25. H.G. Grimmeiss, E. Janzen, B. Skarstam, A. Lodding, J. Appl. Phys. 51, 6238 (1980)

    Article  ADS  Google Scholar 

  26. C.W. White, S.R. Wilson, B.R. Appleton, F.W. Young, J. Appl. Phys. 51, 738 (1980)

    Article  ADS  Google Scholar 

  27. E.M. Lawson, J. Appl. Phys. 53, 6459 (1982)

    Article  ADS  Google Scholar 

  28. T.G. Kim, J.M. Warrender, M.J. Aziz, Appl. Phys. Lett. 88 (2006)

  29. S.U. Campisano, G. Foti, P. Baeri, M.G. Grimaldi, E. Rimini, Appl. Phys. Lett. 37, 719 (1980)

    Article  ADS  Google Scholar 

  30. M.J. Aziz, J. Appl. Phys. 53, 1158 (1982)

    Article  ADS  Google Scholar 

  31. M.J. Aziz, J.Y. Tsao, M.O. Thompson, P.S. Peercy, C.W. White, Phys. Rev. Lett. 56, 2489 (1986)

    Article  ADS  Google Scholar 

  32. J.A. Kittl, P.G. Sanders, M.J. Aziz, D.P. Brunco, M.O. Thompson, Acta Mater. 48, 4797 (2000)

    Article  Google Scholar 

  33. M.A. Sheehy, B.R. Tull, C.M. Friend, E. Mazur, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 137, 289 (2006)

    Google Scholar 

  34. M.A. Sheehy, L. Winston, J.E. Carey, C.M. Friend, E. Mazur, Chem. Mater. 17, 3582 (2005)

    Article  Google Scholar 

  35. C.H. Crouch, J.E. Carey, M. Shen, E. Mazur, F.Y. Genin, Appl. Phys. A-Mater. Sci. Process. 79, 1635 (2004)

    ADS  Google Scholar 

  36. B.R. Tull, J.E. Carey, M.A. Sheehy, C. Friend, E. Mazur, Appl. Phys. A-Mater. Sci. Process. 83, 341 (2006)

    Article  ADS  Google Scholar 

  37. J.E. Carey, Ph.D. Thesis, Harvard University (2004)

  38. B.R. Tull, J.E. Carey, E. Mazur, J. McDonald, S.M. Yalisove, Mater. Res. Soc. Bull. 31, 626 (2006)

    Google Scholar 

  39. R.J. Younkin, J.E. Carey, E. Mazur, J.A. Levinson, C.M. Friend, J. Appl. Phys. 93, 2626 (2003)

    Article  ADS  Google Scholar 

  40. D. von der Linde, K. Sokolowski-Tinten, Appl. Surf. Sci. 154, 1 (2000)

    Article  Google Scholar 

  41. T.E. Glover, J. Opt. Soc. Am. B-Opt. Phys. 20, 125 (2003)

    Article  ADS  Google Scholar 

  42. J. Crank, The Mathematics of Diffusion, 1st edn. (Clarendon, Oxford, 1956)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Mazur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tull, B.R., Winkler, M.T. & Mazur, E. The role of diffusion in broadband infrared absorption in chalcogen-doped silicon. Appl. Phys. A 96, 327–334 (2009). https://doi.org/10.1007/s00339-009-5200-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5200-8

PACS

Navigation