Skip to main content
Log in

Pulsed laser deposition of TiO2: diagnostic of the plume and characterization of nanostructured deposits

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Promising applications of TiO2 nanostructures include the development of optical devices, sensors, photocatalysts and self-cleaning coatings. In view of their importance, research on the synthesis of nanosized TiO2 is a particularly active field. In this work we report on the investigation of the effect of laser irradiation wavelength (Q-switched Nd:YAG laser at 532, 355 and 266 nm), the temperature of the substrate and the atmosphere of deposition (vacuum, Ar and O2) that are suitable for obtaining nanostructured deposits from TiO2 sintered targets. The ablation plume emission is characterized with spectral and temporal resolution by optical emission spectroscopy (OES), while the surface morphology and chemical states of the material deposited on a Si (100) substrate are examined by environmental scanning electron microscopy (ESEM) and atomic force microscopy (AFM) and by X-ray photoelectron spectroscopy (XPS), respectively. Deposits with nanostructured morphology with grain size down to 40 nm and keeping the stoichiometry of the targets were obtained at high temperature, while the highest concentration of particulates was observed at the longest laser wavelength of 532 nm on a substrate heated up to 650°C. In situ characterization of the ablation plume, carried out by OES, indicated the presence of emissions assigned to Ti I, Ti II and O I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.B. Chrisey, G.K. Huber (ed.), Pulsed Laser Deposition of Thin Films (Wiley, New York, 1994)

    Google Scholar 

  2. S. Kitazawa, Y. Choi, S. Yamamoto, T. Yamaki, Thin Solid Films 515, 1901 (2006)

    Article  ADS  Google Scholar 

  3. M.R. Hoffman, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)

    Article  Google Scholar 

  4. E.W. McFarland, J. Tang, Nature 421, 616 (2003)

    Article  ADS  Google Scholar 

  5. X. Peng, J. Wang, D. Thomas, A. Chen, Nanotechnology 16, 2389 (2005)

    Article  ADS  Google Scholar 

  6. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001)

    Article  Google Scholar 

  7. N. Koshizaki, A. Narazaki, T. Sasaki, Appl. Surf. Sci. 197–198, 624 (2002)

    Article  Google Scholar 

  8. J.H. Kim, S. Lee, H.S. Im, Appl. Surf. Sci. 151, 6 (1999)

    Article  ADS  Google Scholar 

  9. X.S. Zhou, Y.H. Lin, B. Li, L.J. Li, J.P. Zhou, C.W. Nan, J. Phys. D Appl. Phys. 39, 538 (2006)

    ADS  Google Scholar 

  10. N. Inoue, H. Yuasa, M. Okoshi, Appl. Surf. Sci. 197–198, 393 (2002)

    Article  Google Scholar 

  11. T. Nambara, K. Yoshida, L. Miao, S. Tanemura, N. Tanaka, Thin Solid Films 515, 3096 (2007)

    Article  ADS  Google Scholar 

  12. A.K. Sharma, R.K. Thareja, U. Willer, W. Schade, Appl. Surf. Sci. 206, 137 (2003)

    Article  ADS  Google Scholar 

  13. M. Terashima, N. Inoue, S. Kashiwabara, R. Fujimoto, Appl. Surf. Sci. 169–170, 535 (2001)

    Article  Google Scholar 

  14. T. Ohshima, S. Nakashima, T. Ueda, H. Kawasaki, Y. Suda, K. Ebihara, Thin Solid Films 506–507, 106 (2006)

    Article  Google Scholar 

  15. O. Albert, S. Roger, Y. Glinec, J.C. Loulergue, J. Etchepare, C. Boulmer-Leborgne, J. Perriere, E. Millon, Appl. Phys. A 76, 319 (2003)

    Article  ADS  Google Scholar 

  16. S. Kitazawa, Y. Choi, S. Yamamoto, Vacuum 74, 637 (2004)

    Article  Google Scholar 

  17. C.D. Wagner, L.E. Davis, M.V. Zeller, J.A. Taylor, R.M. Raymond, L.H. Gale, Surf. Interface Anal. 3, 211 (1981)

    Article  Google Scholar 

  18. F. Montoncello, M.C. Carotta, B. Cavicchi, M. Ferroni, A. Giberti, V. Guidi, C. Malagù, G. Martinelli, F. Meinardi, J. Appl. Phys. 94, 1501 (2003)

    Article  ADS  Google Scholar 

  19. V. Craciun, N. Bassim, R.K. Singh, D. Craciun, J. Hermann, C. Boulmer-Leborgne, Appl. Surf. Sci. 186, 288 (2002)

    Article  ADS  Google Scholar 

  20. J.F. Marco, A. Cuesta, M. Gracia, J.R. Gancedo, P. Panjan, D. Hanzel, Thin Solid Films 492, 158 (2005)

    Article  ADS  Google Scholar 

  21. P.M. Kumar, S. Badrinarayanan, M. Sastry, Thin Solid Films 358, 122 (2000)

    Article  ADS  Google Scholar 

  22. F. Zhao, B. Wang, X. Cui, N. Pan, H. Wang, J.G. Hou, Thin Solid Films 489, 221 (2005)

    Article  ADS  Google Scholar 

  23. M. Walczak, E.L. Papadopoulou, M. Sanz, A. Manoussaki, J.F. Marco, M. Castillejo, Appl. Surf. Sci. (2008, submitted)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malgorzata Walczak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walczak, M., Oujja, M., Marco, J.F. et al. Pulsed laser deposition of TiO2: diagnostic of the plume and characterization of nanostructured deposits. Appl. Phys. A 93, 735–740 (2008). https://doi.org/10.1007/s00339-008-4704-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4704-y

PACS

Navigation