Skip to main content
Log in

Ultrashort laser ablation of PMMA and intraocular lenses

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The use of intraocular lenses (IOLs) is the most promising method to restore vision after cataract surgery. Several new materials, techniques, and patterns have been studied for forming and etching IOLs to improve their optical properties and reduce diffractive aberrations. This study is aimed at investigating the use of ultrashort laser pulses to ablate the surface of PMMA and intraocular lenses, and thus provide an alternative to conventional techniques. Ablation experiments were conducted using various polymer substrates (PMMA samples, hydrophobic acrylic IOL, yellow azo dye doped IOL, and hydrophilic acrylic IOL consist of 25% H2O). The irradiation was performed using 100 fs pulses of 800 nm radiation from a regeneratively amplified Ti:sapphire laser system. We investigated the ablation efficiency and the phenomenology of the ablated patterns by probing the ablation depth using a profilometer. The surface modification was examined using a high resolution optical microscope (IOLs) or atomic force microscope—AFM (PMMA samples). It was found that different polymers exhibited different ablation characteristics, a result that we attribute to the differing optical properties of the materials. In particular, it was observed that the topography of the ablation tracks created on the hydrophilic intraocular lenses was smoother in comparison to those created on the PMMA and hydrophobic lens. The yellow doped hydrophobic intraocular lenses show higher ablation efficiency than undoped hydrophobic acrylic lenses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Yingling, B. Garrison, J. Phys. Chem. 109, 16482 (2005)

    Google Scholar 

  2. V. Sankar, T.K. Kumar, K.R. Punduranga, Trends Biomater. Artif. Organs. 17, 24 (2004)

    Google Scholar 

  3. T. Oshika, T. Nagata, Y. Ishii, J. Opthalmol. 82, 549 (1998)

    Google Scholar 

  4. S.D. McLeod, V. Portney, A. Ting, Brit. J. Opthalmol. 87, 1083 (2003)

    Article  Google Scholar 

  5. J.C. Javitt, R.F. Steinert, Opthalmology 107, 2040 (2000)

    Article  Google Scholar 

  6. H.N. Sen, A.U. Sarikkola, R.J. Uusitalo, L. Laatikainen, J. Cataract. Refract. Surg. 30, 2483 (2004)

    Article  Google Scholar 

  7. J.A. Davison, M.J. Simpson, J. Cataract. Refract. Surg. 32, 849 (2006)

    Article  Google Scholar 

  8. D. von der Linde, K. Sokolowski-Tinten, W. Bialkowsk, J. Appl. Surf. Sci. 1, 109 (1997)

    Google Scholar 

  9. A.A. Serafetinidies, C.D. Skordoulis, M.I. Makropoulou, A.K. Kar, Appl. Surf. Sci. 135, 276 (1998)

    Article  ADS  Google Scholar 

  10. Y. Zhang, R.M. Lowe, E. Harvey, P. Hannaford, A. Endo, Appl. Surf. Sci. 186, 345 (2002)

    Article  ADS  Google Scholar 

  11. H. Niino, A. Yabe, J. Photopolym. Sci. Technol. 14, 197 (2001)

    Article  Google Scholar 

  12. J. Squier, F. Salin, G. Mourou, D. Harter, Opt. Lett. 16, 324 (1991)

    Article  ADS  Google Scholar 

  13. K. Yamakawa, A. Magana, P.H. Chiu, Appl. Phys. B 58, 323–326 (1994)

    Article  ADS  Google Scholar 

  14. H. Kumagai, K. Midorikawa, K. Toyoda, Appl. Phys. Lett. 65, 14 (1994)

    Article  Google Scholar 

  15. J.D. Bhawalkar, G.S. He, P.N. Prasad, Rep. Prog. Phys. 59, 1041–1070 (1996)

    Article  ADS  Google Scholar 

  16. S. Baudach, J. Bonse, J. Krüger, W. Kautek, Appl. Surf. Sci. 555, 154 (2000)

    Google Scholar 

  17. M.C. Mc Kraff, D. Sanders, H.L. Lieberman, J. Am. Intraocul. Implant. Soc. 93, 301 (1983)

    Google Scholar 

  18. R.H. Berg, S. Hvilsted, P.S. Ramanujam, Nature 383, 505 (1996)

    Article  ADS  Google Scholar 

  19. Y. Shi, C. Zhang, J.H. Bechtel, L.R. Dalton, B.H. Robishon, W.H. Steiter, Science 288, 119 (2000)

    Article  ADS  Google Scholar 

  20. J. Si, J. Qiu, J. Zhai, Y. Shen, K. Hirao, Appl. Phys. Lett. 80, 359 (2002)

    Article  ADS  Google Scholar 

  21. J. Krüger, S. Martin, H. Mädebach, L. Urech, T. Lippert, A. Wokaun, W. Kautek, Appl. Surf. Sci. 247, 406 (2005)

    Article  ADS  Google Scholar 

  22. S. Campbell, S.M.F. Triphan, R. El-Agmy, A.H. Greenaway, D.T. Reid, J. Opt. A. 9, 1100–1104 (2007)

    Article  ADS  Google Scholar 

  23. C. Wochnowski, Y. Hanada, Y. Cheng, S. Metev, F. Vollertsen, K. Sugioka, K. Midorikawa, J. Appl. Polym. Sci. 100, 1229–1238 (2006)

    Article  Google Scholar 

  24. P.J. Scully, D. Jones, D.A. Jaroszynski, J. Opt. A: Pure Appl. Opt. 5, S92–S96 (2003)

    Article  ADS  Google Scholar 

  25. R. Srinivasan, SPIE/Thermal and Optical Interactions with Biological and Related Composite Materials, vol. 1064, pp. 77–82, (1989)

  26. H.M. Zidan, A. Tawansi, M. Abu-Elnader, Physica B 339, 78–86 (2003)

    Article  ADS  Google Scholar 

  27. Z. Yuan, P. Reinach, J. Yuan, Opthalmology 105, 1004–1010 (1998)

    Article  Google Scholar 

  28. Y. Yanagi, Y. Inoue, A. Iriyama, W.D. Jang, J. Cataract. Refract. Surg. 32, 1540–1544 (2006)

    Article  Google Scholar 

  29. Y. Ueno, K. Ajito, Y.Y. Maruo, Phys. Chem. 4, 2341 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Spyratou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serafetinides, A.A., Makropoulou, M., Fabrikesi, E. et al. Ultrashort laser ablation of PMMA and intraocular lenses. Appl. Phys. A 93, 111–116 (2008). https://doi.org/10.1007/s00339-008-4666-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4666-0

PACS

Navigation