Skip to main content
Log in

Single and multiple shot near-infrared femtosecond laser pulse ablation thresholds of copper

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The single-shot ablation threshold and incubation coefficient of copper were investigated using an amplified near-infrared, femtosecond Ti:sapphire laser. To date, the near-infrared femtosecond ablation threshold of copper has been reported in the range of several hundred millijoules per cm2 based primarily on multiple shot ablation studies. A careful study of the single shot ablation threshold for copper was carried out yielding an incident single-shot ablation threshold of (1.06±0.12) J/cm2 for a clean copper foil surface. This was determined by measuring the diameters of the ablation spots as a function of the laser pulse energy using scanning electron microscopy for spatially Gaussian laser spots. When multiple shots were taken on the same spot, a reduction in ablation threshold was observed, consistent with a multiple shot incubation coefficient of 0.76±0.02. Similar experiments on 250 nm and 500 nm copper thin films sputtered on a silicon substrate demonstrated that scaling the threshold values with the absorbance of energy at the surface yields a consistent absorbed fluence threshold for copper of (59±10) mJ/cm2. This absorbed threshold value is consistent with the expected value from a two-temperature model for the heating of copper with an electron-lattice coupling constant of g=1017 Wm-3 K-1. Single-shot rippling of the surface in the threshold ablation intensity regime was also observed for the foil target but not for the smooth thin film target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Preuss, A. Demchuk, M. Stuke: Appl. Phys. A 61, 33 (1995)

    Article  ADS  Google Scholar 

  2. C. Momma, S. Nolte, B.N. Chichkov, F. von Alvensleben, A. Tünnermann: Appl. Surf. Sci. 109110, 15 (1997)

    Google Scholar 

  3. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B.N. Chichkov, B. Wellegehausen, H. Welling: J. Opt. Soc. Am. B 14, 2716 (1997)

    Article  ADS  Google Scholar 

  4. M.H. Hong, Y.-F. Lu, W.D. Song, D.M. Liu, T.-S. Low: Proc. SPIE 3184, 148 (1997)

    Article  ADS  Google Scholar 

  5. K. Furusawa, K. Takahashi, H. Kumagai, K. Midorikawa, M. Obara: Appl. Phys. A 69, S359 (1999)

  6. C. Li, M. Argument, Y.Y. Tsui, R. Fedosejevs: Proc. of SPIE 4087, 1194 (2000)

    Article  ADS  Google Scholar 

  7. Y.-F. Lu, M.H. Hong: J. Appl. Phys. 86, 2812 (1999)

    Article  ADS  Google Scholar 

  8. S. Amoruso, X. Wang, C. Altucci, C. de Lisio, M. Armenante, R. Bruzzese, N. Spinelli, R. Velotta: Appl. Surf. Sci. 186, 358 (2002)

    Article  ADS  Google Scholar 

  9. S. Amoruso, X. Wang, C. Altucci, C. de Lisio, M. Armenante, R. Bruzzese, R. Velotta: Appl. Phys. Lett. 77, 3728 (2000)

    Article  ADS  Google Scholar 

  10. J.M. Liu: Opt. Lett. 7, 196 (1982)

    Article  ADS  Google Scholar 

  11. Y. Jee, M.F. Becker, R.M. Walser: J. Opt. Soc. Am. B 5, 648 (1988)

    Article  ADS  Google Scholar 

  12. Hurricane, Spectra-Physics, Inc., 1335 Terra Bella Ave., 94039

  13. SSA Autocorrelator: Positive Light, Inc., 101 Cooper Ct., 95032

  14. USB2000 Spectrometer: Ocean Optics, Inc., 830 Douglas Ave., 34698

  15. Goodfellow Cambridge Limited: Ermine Business Park, PE29 6WR

  16. Zygo Corporation: Laurel Brook Rd., 06455-0448

  17. Nanomover I: Melles Griot, Inc., 2051 Palomar Airport Rd., 200, 92009

  18. J.R. Taylor: An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurments (University Science Books, Sausalito 1997)

  19. M. Lenzner, F. Krausz, J. Krüger, W. Kautek: Appl. Surf. Sci. 154155, 11 (2000)

    Google Scholar 

  20. ISP-30-6-REFL Integrating Sphere, Ocean Optics, Inc., 830 Douglas Ave., 34698

  21. D.R. Lide: CRC Handbook of Chemistry and Physics (Chemical Rubber Publishing Co., Washington 2004)

  22. J. Jandeleit, G. Urbasch, H.D. Hoffmann, H.-G. Treusch, E.W. Kreutz: Appl. Phys. A 63, 117 (1996)

    Article  ADS  Google Scholar 

  23. R. Fedosejevs, R. Ottmann, R. Sigel, G. Kühnle, S. Szatmári, F.P. Schäfer: Appl. Phys. B 50, 79 (1990)

    Article  ADS  Google Scholar 

  24. P.B. Corkum, F. Brunel, N.K. Sherman, T. Srinivasan-Rao: Phys. Rev. Lett. 61, 2886 (1988)

    Article  ADS  Google Scholar 

  25. D.E. Gray: American Institute of Physics Handbook (McGraw-Hill, New York 1972)

  26. K. Eidmann, J. Meyer-ter-Vehn, T. Schlegel, S. Hüller: Phys. Rev. E 62, 1202 (2000)

    Article  ADS  Google Scholar 

  27. J. Hohlfeld, S.S. Wellershoff, J. Güdde, U. Conrad, V. Jahnke, E. Matthias: Chem. Phys. 251, 237 (2000)

    Article  ADS  Google Scholar 

  28. H.E. Elsayed-Ali, T.B. Norris, M.A. Pessot, G.A. Mourou: Phys. Rev. Lett. 58, 1212 (1987)

    Article  ADS  Google Scholar 

  29. J.F. Young, J.S. Preston, H.M. van Driel, J.E. Sipe: Phys. Rev. B 27, 1155 (1983)

    Article  ADS  Google Scholar 

  30. D. Bäuerle: Laser Processing and Chemistry (Springer, Berlin 2000) p. 570

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Fedosejevs.

Additional information

PACS

61.80.Ba; 61.82.Bg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirkwood, S., van Popta, A., Tsui, Y. et al. Single and multiple shot near-infrared femtosecond laser pulse ablation thresholds of copper. Appl. Phys. A 81, 729–735 (2005). https://doi.org/10.1007/s00339-004-3135-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-3135-7

Keywords

Navigation