Skip to main content
Log in

Crystallographically-oriented single-crystalline copper nanowire arrays electrochemically grown into nanoporous anodic alumina templates

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Highly crystallographically-oriented single-crystalline copper nanowire arrays were electrochemically deposited into nanoporous commercial alumina templates. A gold/copper backward contact was needed in the template, while the nanowires were grown from a 0.5 M CuSO4·5H2O solution adjusted to pH=1. The kinetics of the growing process is studied by means of current vs. time curves. The pore filling is between 80 to 90%. The structure and morphology of the wires are studied by XRD, SEM and TEM. The wires have an average diameter of 150 nm corresponding to the pore diameter of the template, with the cubic face-centered copper structure. This structure is highly oriented along the [100] direction parallel to the wire axis. The preferential growing along this direction was not previously found in the literature, which may have interesting applications when such direction is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.S. Dresselhaus, Y.M. Lin, O. Rabin, M.R. Black, G. Dresselhaus: Nanowires, In Springer Handbook of Nanotechnology, ed. by B. Bhushan, (Springer, Berlin 2004) p. 99

  2. P. Yang, Y. Wu, R. Fang: Int. J. Nanoscience 1, 1 (2002)

    Article  ADS  Google Scholar 

  3. M. Dresselhaus, Y.M. Lin, O. Rabin, A. Jorio, A.G. Souza Filho, M.A. Pimenta, R. Saito, Ge.G. Samsonidze, G. Dresselhaus: Mater. Sci. Eng. C 23, 129 (2003)

    Article  Google Scholar 

  4. I.W. Hamley: Angew. Chem. Int. Ed. 42, 1692 (2003)

    Article  Google Scholar 

  5. C.J. Murphy, N.R. Jana: Adv. Mater. 14, 80 (2002)

    Article  Google Scholar 

  6. D. Xu, D. Chen, Y. Xu, X. Shi, G. Guo, L. Gui, Y. Tang: Pure Appl. Chem. 72, 127 (2000)

    Google Scholar 

  7. F. Elhoussine, S. Matefi-Tempfli, A. Encinas, L. Piraux: Appl. Phys. Lett. 81, 1681 (2002)

    Article  ADS  Google Scholar 

  8. F. Elhoussine, A. Encinas, S. Matefi-Tempfli, L. Piraux: J. Appl. Phys. 93, 8567 (2003)

    Article  ADS  Google Scholar 

  9. J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs: Phys. Rev. Lett. 76, 4773 (1996)

    Article  ADS  Google Scholar 

  10. N. Garcia, E.V. Ponizovskaya, J.Q. Xiao: Appl. Phys. Lett. 80, 1120 (2002)

    Article  ADS  Google Scholar 

  11. L.-Ming Li, Z.-Qing Zhang, X. Zhang: Phys. Rev. B 58, 15589 (1998)

    Article  ADS  Google Scholar 

  12. N. Garcia, E.V. Ponizowskaya, H. Zhu, J.Q. Xiao, A. Pons: Appl. Phys. Lett. 82, 3147 (2003)

    Article  ADS  Google Scholar 

  13. R.J. Walsh, G. Chumanov: Appl. Spectrosc. 55, 1695 (2001)

    Article  ADS  Google Scholar 

  14. A.I. Yanson, G.R. Bollinger, H.E. van den Brom, N. Agrait, J.M. van Ruitenbeek: Nature 395, 783 (1998)

    Article  ADS  Google Scholar 

  15. J. Malicka, I. Gryczynski, J. Kusba, Y.B. Shen, J.R. Lakowicz: Biochem. Biophys. Res. Commun. 294, 886 (2002)

    Article  Google Scholar 

  16. D.H. Reich, M. Tanase, A. Hultgren, L.A. Bauer, C.S. Chen, G.J. Meyer: J. Appl. Phys. 93, 7275 (2003)

    Article  ADS  Google Scholar 

  17. G. Yi, W. Schwarzacher: Appl. Phys. Lett. 74, 1746 (1999)

    Article  ADS  Google Scholar 

  18. M. Tian, J. Wang, J. Snyder, J. Kurtz, Y. Liu, P. Schiffer, T.E. Mallouk, M.H.W. Chan: Appl. Phys. Lett. 83, 1620 (2003)

    Article  ADS  Google Scholar 

  19. K. Liu, C.L. Chien, P.C. Searson, K. Yu-Zhang: Appl. Phys. Lett. 73, 1436 (1998)

    Article  ADS  Google Scholar 

  20. J. Heremans, C.M. Thrush, Y-M. Ling, S. Cronin, Z. Zhang, M.S. Dresselhaus, J.F. Mansfield: Phys. Rev. B 61, 2921 (2000)

    Article  ADS  Google Scholar 

  21. Y-G. Guo, L-J. Wan, C-F. Zhu, D-L. Yang, D-M. Chen, C-L. Bai: Chem. Mater. 15, 664 (2003)

    Article  Google Scholar 

  22. G.A. Prinz: Science 282, 1660 (1998)

    Article  Google Scholar 

  23. F. Li, R.M. Metzger, W.D. Doyle: IEEE Trans. Mag. 33, 3715 (1997)

    Article  ADS  Google Scholar 

  24. C.L. Chien, L. Sun, M. Tanase, L.A. Bauer, A. Hultgren, D.M. Silevitch, G.J. Meyer, P.C. Searson, D.H. Reich: J. Magn. Mag. Mat. 249, 146 (2002)

    Article  ADS  Google Scholar 

  25. D.N. Davydov, P.A. Sattari, D. Almawlawi, A. Osika, T.L. Haslett, M. Moskovits: J. Appl. Phys. 86, 3983 (1999)

    Article  ADS  Google Scholar 

  26. M. Martín-González, A.L. Prieto, M.S. Kox, R. Gronsky, T. Sands, A.M. Stacy: Chem. Mater. 15, 1676 (2003)

    Article  Google Scholar 

  27. M.S. Dresselhaus, Y.M. Lin, O. Rabin, M.R. Black, G. Dresselhaus: Nanowires, In Springer Handbook of Nanotechnology, ed. by B. Bhushan, (Springer, Berlin 2004) p. 131

  28. Y.T. Pang, G.W. Meng, Y. Zhang, Q. Fang, L.D. Zhang: Appl. Phys. A 76, 533 (2003)

    Article  ADS  Google Scholar 

  29. J. Choi, G. Sauer, K. Nielsch, R.B. Wehrspohn, U. Gösele: Chem. Mater. 15, 776 (2003)

    Article  Google Scholar 

  30. A.C. Gâlcâ, E. Stefan Kooij, H. Wormeester, C. Salm, V. Leca, J.H. Rector, B. Poelsema: J. Appl. Phys. 94, 4296 (2003)

    Article  ADS  Google Scholar 

  31. F. Genereux, S.W. Leonard, H.M. van Driel: Phys. Rev. B 63, 161101 (2001)

    Article  ADS  Google Scholar 

  32. W.C. West, N.V. Myung, J.F. Whitacre, B.V. Ratnakumar: J. Power Sources 126, 203, 2004

    Google Scholar 

  33. D.J. Pena, B. Razavi, P.A. Smith, J.K. Mdindyo, M.J. Natan, T.S. Mayer, T.E. Mallouk, C.D. Keating: Mat. Res. Soc. Symp. 636, D.4.6.1 (2001)

  34. G.M. Wallraff, W.D. Hinsberg: Chem. Rev. 99, 1801 (1999)

    Article  Google Scholar 

  35. R.M. Nyffenegger, R.M. Penner: Chem. Rev. 97, 1195 (1997)

    Article  Google Scholar 

  36. S.H. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser: Science 287, 1989 (2000)

    Article  ADS  Google Scholar 

  37. F. Sharifi, A.V. Herzog, R.C. Dynes: Phys. Rev. Lett. 71, 428 (1993) and references therein

    Article  ADS  Google Scholar 

  38. M.E. Tomil Molares, J. Brötz, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I.U. Schuchert, C. Trautmann, J. Vetter: Nucl. Instrum. Methods Phys. Res., Sect. B 185, 192 (2001)

    Article  ADS  Google Scholar 

  39. G.E. Possin: Rev. Sci. Instrum. 41, 772 (1970)

    Article  ADS  Google Scholar 

  40. C.R. Martin: Science 266, 1961 (1994)

    Article  ADS  Google Scholar 

  41. A. Huczko: Appl. Phys. A 70, 365 (2000)

    Article  ADS  Google Scholar 

  42. I.U. Schuchert, M.E. Toimil Molares, D. Dobrev, J. Vetter, R. Neumann, M. Martin: J. Electrochem. Soc. 150, C189 (2003)

  43. S. Ge, C. Li, X. Ma, W. Li, L. Xi, C.X. Li: J. Appl. Phys. 90, 509 (2001)

    Article  ADS  Google Scholar 

  44. I. Enculescu, Z. Siwy, D. Dobrev, C. Trautmann, M.E. Toimil Molares, R. Neumann, K. Hjort, L. Westerberg, R. Spohr: Appl. Phys. A 77, 751 (2003)

    Article  ADS  Google Scholar 

  45. H. Masuda, M. Satoh: Jpn. J. Appl. Phys. 35, L 126 (1996)

  46. A-P. Li, F. Müller, A. Birner, K. Nielsch, U. Gösele: Adv. Mater. 11, 483 (1999)

    Article  Google Scholar 

  47. G.D. Sulka, S. Stroobants, V. Moshchalkov, G. Borghs, J.-P. Cellis: J. Electrochem. Soc. 149, D97 (2002)

  48. T. Thurn-Albrecht, J. Schotter, G.A. Kästle, N. Emley, T. Shibauchi, L. Krusin;Elbaum, K. Guarini, C.T. Black, M.T. Tuominen, T.P. Russell: Science 290, 2126 (2000)

    Article  ADS  Google Scholar 

  49. R.M. Metzger, V.V. Konovalov, M. Sun, T. Xu, G. Zangari, B. Xu, M. Benakli, W.D. Doyle: IEEE Trans. Magn. 36, 30 (2000)

    Article  ADS  Google Scholar 

  50. Y. Li, G.W. Meng, L.D. Zhang, F. Phillipp: Appl. Phys. Lett. 76, 2011 (2000)

    Article  ADS  Google Scholar 

  51. M. Zhang, S. Lenhert, M. Wang, L. Chi, N. Lu, H. Fuchs, N. Ming: Adv. Mater. 16, 409 (2004)

    Article  ADS  Google Scholar 

  52. H. He, N.J. Tao: Encyclopedia of Nanoscience and Nanotechnology, ed. by H.S. Nalwa, Vol. X, p. 1–18, Copyright Am. Scientific Publishers, 2003

  53. S. Krongelb, L.T. Romankiw, J.A. Tornello: IBM J. Res. Dev. 42, 575 (1998)

    Article  Google Scholar 

  54. Z. Liu, Y. Bando: Adv. Mater. 15, 303, 2003

    Google Scholar 

  55. I.Z. Rahman, K.M. Razeeb, M.A. Rahman, Md. Kamruzzaman: J. Magn. Magn. Mater. 262, 166 (2003)

    Article  ADS  Google Scholar 

  56. Y. Henry, K. Ounadjela, L. Piraux, S. Dubois, J.-M. George, J.-L. Duvail: Eur. Phys. J. B. 20, 35, 2001

    Google Scholar 

  57. H. Schwanbeck, U. Schmidt: Electrochim. Acta 45, 4389 (2000)

    Article  Google Scholar 

  58. C. Schönenberger, B.M. van der Zande, L.G.J. Fokking, M. Henry, C. Schimd, M. Krüger, A. Bachtold, R. Huber, H. Birk, U. Staufer: J. Phys. Chem. 101, 5497 (1997)

    Article  Google Scholar 

  59. S. Leopold, I.U. Schuchert, J. Lu, M.E. Toimil Molares, M. Herranen, J.O. Carlsson: Electrochim. Acta 47, 4393 (2002)

    Article  Google Scholar 

  60. M.E. Toimil Molares, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I.U. Schuchert, J. Vetter: Adv. Mater. 13, 62 (2001)

    Article  Google Scholar 

  61. S. Valizadeh, J.M. George, P. Leisner, L. Hultman: Thin Solid Films 402, 262 (2002)

    Article  ADS  Google Scholar 

  62. A. Kazadi Mukenga Bantu, J. Rivas, G. Zaragoza, M.A. López-Quintela, M.C. Blanco: J. Appl. Phys. 89, 3393 (2001)

    Article  ADS  Google Scholar 

  63. M.S. Sander, R. Gronsky, T. Sands, A.M. Stacy: Chem. Mater. 15, 335 (2003)

    Article  Google Scholar 

  64. A.L. Prieto, M.S. Sander, M.S. Martín-González, R. Gronsky, T. Sands, A.M. Stacy: J. Am. Chem. Soc. 123, 7160 (2001)

    Article  Google Scholar 

  65. C.G. Jin, W.F. Liu, C. Jia, X.Q. Xiang, W.L. Cai, L.Z. Yao, X.G. Li: J. Crystal. Growth 258, 337 (2003)

    Article  ADS  Google Scholar 

  66. D. Routkevitch, T. Bigioni, M. Moskovits, J. Ming Xu: J. Phys. Chem. 100, 14037 (1996)

    Article  Google Scholar 

  67. JCPDS Copper, File 04-836

  68. Y.C. Wang, I.C. Leu, M.H. Hon: J. Appl. Phys. 95, 1444 (2004)

    Article  ADS  Google Scholar 

  69. G.B. Harris: Phil. Mag. 43, 113 (1952)

    Article  Google Scholar 

  70. T. Gao, G.W. Meng, J. Zhang, Y.W. Wang, C.H. Liang, J.C. Fan, L.D. Zhang: Appl. Phys. A 73, 251 (2001)

    Article  ADS  Google Scholar 

  71. T. Gao, G. Meng, Y. Wang, S. Sun, L. Zhang: J. Phys. Condens. Matter 14, 355 (2002)

    Article  ADS  Google Scholar 

  72. H.H. Huang, M.H. Hon, M.C. Wang: J. Cryst. Growth 240, 513 (2002), and references therein

    Article  ADS  Google Scholar 

  73. J.S. Chen, B.C. Lim, J.P. Wang: Appl. Phys. Lett. 81, 1848 (2002)

    Article  ADS  Google Scholar 

  74. J.M.E. Harper, C. Cabral Jr., P.C. Andricacos, L. Gignac, I.C. Noyan, K.P. Rodbell, C.K. Hu: J. Appl. Phys. 86, 2516 (1999)

    Article  ADS  Google Scholar 

  75. S-C. Chang, J-M. Shieh, B-T. Dai, M-S. Feng, Y-H. Li: J. Electrochem. Soc. 149, G535 (2002)

  76. X.F. Wang, J. Zhang, H.Z. Shi, Y.W. Wang, G.W. Meng, X.S. Peng, J. Fang: J. Appl. Phys. 89, 3847 (2001)

    Article  ADS  Google Scholar 

  77. X.Y. Zhang, L.D. Zhang, Y. Lei, L.X. Zhao, Y.Q. Mao: J. Mater. Chem. 11, 1732 (2001)

    Article  Google Scholar 

  78. J. Diao, K. Gall, M.L. Dunn: Phys. Rev. B 70, 075413-1 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E.A. Dalchiele.

Additional information

PACS

81.05.Bx; 82.45.Qr; 81.07.-b

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riveros, G., Gómez, H., Cortes, A. et al. Crystallographically-oriented single-crystalline copper nanowire arrays electrochemically grown into nanoporous anodic alumina templates. Appl. Phys. A 81, 17–24 (2005). https://doi.org/10.1007/s00339-004-3112-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-3112-1

Keywords

Navigation