Skip to main content

Advertisement

Log in

Effects of coral-derived organic matter on the growth of bacterioplankton and heterotrophic nanoflagellates

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Exudates derived from hermatypic corals were incubated with <2 µm filtered seawater containing heterotrophic bacteria and <10 µm filtered seawater containing bacteria and nanoflagellates (HNF) under dark conditions for 96 h to quantify the growth of both bacteria and HNF in response to coral-derived dissolved organic matter (DOM). The addition of coral-derived DOM caused significantly higher growth rates and production of bacteria and HNF compared to those in control seawater without coral exudates. During the incubation, HNF exhibited their peak in abundance 24–48 h after the peak abundance of bacteria. The growth efficiencies of both bacteria and HNF were significantly higher with coral-derived DOM, suggesting higher transfer efficiency from bacteria that is fueled by coral organic matter to HNF. Therefore, trophic transfer of coral-derived DOM from bacteria to HNF can contribute to efficient carbon flow through the microbial food web.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allers E, Niesner C, Wild C, Pernthaler J (2008) Microbes enriched in seawater after addition of coral mucus. Appl Environ Microbiol 74:3274–3278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray JC, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–264

    Article  Google Scholar 

  • Bailey TG, Robertson DR (1982) Organic and caloric levels of fish feces relative to its consumption by coprophagous reef fishes. Mar Biol 69:45–50

    Article  Google Scholar 

  • Brown BE, Bythell JC (2005) Perspectives on mucus secretion in reef corals. Mar Ecol Prog Ser 296:291–309

    Article  CAS  Google Scholar 

  • Caron DA, Lim EL, Miceli G, Waterbury JB, Valois FW (1991) Grazing and utilization of chroococcoid cyanobacteria and heterotrophic bacteria by protozoa in laboratory cultures and a coastal plankton community. Mar Ecol Prog Ser 76:205–217

    Article  Google Scholar 

  • Caron DA, Dam HG, Kremer P, Lessard EJ, Madin LP, Malone TC, Napp JM, Peele ER, Roman MR, Youngbluth MJ (1995) The contribution of microorganisms to particulate carbon and nitrogen in surface waters of the Sargasso Sea near Bermuda. Deep Sea Res Part 1 Oceanogr Res Pap 42:943–972

    Article  CAS  Google Scholar 

  • Davies PS (1984) The role of zooxanthellae in the nutritional energy requirements of Pocillopora eydouxi. Coral Reefs 2:181–186

    Google Scholar 

  • Ferrier-Pagès C, Gattuso JP (1998) Biomass, production and grazing rates of pico- and nanoplankton in coral reef waters (Miyako Island, Japan). Microb Ecol 35:46–57

    Article  PubMed  Google Scholar 

  • Ferrier-Pagès C, Furla P (2001) Pico- and nanoplankton biomass and production in the two largest atoll lagoons of French Polynesia. Mar Ecol Prog Ser 211:63–76

    Article  Google Scholar 

  • Ferrier-Pagès C, Leclercq N, Jaubert J, Pelegri SP (2000) Enhancement of pico-and nanoplankton growth by coral exudates. Aquat Microb Ecol 21:203–209

    Article  Google Scholar 

  • Fuhrman JA, Noble RT (1995) Viruses and protists cause similar bacterial mortality in coastal seawater. Limnol Oceanogr 40:1236–1242

    Article  Google Scholar 

  • Fukuda R, Ogawa H, Nagata T, Koike I (1998) Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Appl Environ Microbiol 64:3352–3358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grujčić V, Kasalický V, Šimek K (2015) Prey-specific growth responses of freshwater flagellate communities induced by morphologically distinct bacteria from the genus Limnohabitans. Appl Environ Microbiol 81:4993–5002

    Article  PubMed  PubMed Central  Google Scholar 

  • Haas AF, Nelson CE, Kelly LW, Carlson CA, Rohwer F, Leichter JJ, Wyatt A, Smith JE (2011) Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity. PLoS One 6:e27973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas AF, Nelson CE, Rohwer F, Wegley-Kelly L, Quistad SD, Carlson CA, Leichter JJ, Hatay M, Smith JE (2013) Influence of coral and algal exudates on microbially mediated reef metabolism. PeerJ 1:e108

    Article  PubMed  PubMed Central  Google Scholar 

  • Hennes KP, Simon M (1995) Significance of bacteriophages for controlling bacterioplankton growth in a mesotrophic lake. Appl Environ Microbiol 61:333–340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herndl GJ, Velimirov B (1986) Microheterotrophic utilization of mucus released by the Mediterranean coral Cladocora cespitosa. Mar Biol 90:363–369

    Article  Google Scholar 

  • Jürgens K, Massana R (2008) Protist grazing on marine bacterioplankton. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley-Liss, New York, pp 383–442

    Chapter  Google Scholar 

  • Jürgens K, Gasol JM, Vaqué D (2000) Bacteria–flagellate coupling in microcosm experiments in the Central Atlantic Ocean. J Exp Mar Bio Ecol 245:127–147

    Article  Google Scholar 

  • Kirchman DL (2012) Processes in microbial ecology. Oxford University Press, Oxford

    Google Scholar 

  • Lee S, Fuhrman JA (1987) Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl Environ Microbiol 53:1298–1303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leruste A, Bouvier T, Bettarel Y (2012) Enumerating viruses in coral mucus. Appl Environ Microbiol 78:6377–6379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linley EAS, Koop K (1986) Significance of pelagic bacteria as a trophic resource in a coral reef lagoon, One Tree Island, Great Barrier Reef. Mar Biol 92:457–464

    Article  Google Scholar 

  • Marsh JA (1970) Primary productivity of reef-building calcareous red algae. Ecology 51:255–263

    Article  Google Scholar 

  • Moriarty DJW, Pollard PC, Hunt WG (1985) Temporal and spatial variation in bacterial production in the water column over a coral reef. Mar Biol 85:285–292

    Article  Google Scholar 

  • Nakajima R, Yoshida T, Azman BAR, Zaleha K, Othman BHR, Toda T (2009) In situ release of coral mucus by Acropora and its influence on the heterotrophic bacteria. Aquat Ecol 43:815–823

    Article  CAS  Google Scholar 

  • Nakajima R, Yoshida T, Fujita K, Nakayama A, Fuchinoue Y, Othman BHR, Toda T (2010) Release of particulate and dissolved organic carbon by the scleractinian coral Acropora formosa. Bull Mar Sci 86:861–870

    Article  Google Scholar 

  • Nakajima R, Tanaka Y, Yoshida T, Fujisawa T, Nakayama A, Fuchinoue Y, Othman BHR, Toda T (2015) High inorganic phosphate concentration in coral mucus and its utilization by heterotrophic bacteria in a Malaysian coral reef. Mar Ecol 36:835–841

    Article  CAS  Google Scholar 

  • Nakano S (2000) The role of protists in microbial loop of lake ecosystems. Japanese Journal of Ecology 50:41–54

    Google Scholar 

  • Naumann MS, Haas A, Struck U, Mayr C, el-Zibdah M, Wild C (2010) Organic matter release by dominant hermatypic corals of the Northern Red Sea. Coral Reefs 29:649–659

    Article  Google Scholar 

  • Nelson CE, Goldberg SJ, Kelly LW, Haas AF, Smith JE, Rohwer F, Carlson CA (2013) Coral and macroalgal exudates vary in neutral sugar composition and differentially enrich reef bacterioplankton lineages. ISME J 7:962–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa H, Usui T, Koike I (2003) Distribution of dissolved organic carbon in the East China Sea. Deep Sea Res Part II Top Stud Oceanogr 50:353–366

    Article  CAS  Google Scholar 

  • Paul JH, DeFlaun MF, Jeffrey WH (1986) Elevated levels of microbial activity in the coral surface microlayer. Mar Ecol Prog Ser 33:29–40

    Article  Google Scholar 

  • Proctor LM, Fuhrman JA (1990) Viral mortality of marine bacteria and cyanobacteria. Nature 343:60

    Article  Google Scholar 

  • Sanders RW, Caron DA, Berninger UG (1992) Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters: an inter-ecosystem comparison. Mar Ecol Prog Ser 86:1–14

    Article  Google Scholar 

  • Sherr EB, Caron DA, Sherr BF (1993) Staining of heterotrophic protists for visualization via epifluorescence microscopy. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Handbook of methods in aquatic microbial ecology. CRC Press, New York, pp 213–227

    Google Scholar 

  • Shibata A, Goto Y, Saito H, Kikuchi T, Toda T, Taguchi S (2006) Comparison of SYBR Green I and SYBR Gold stains for enumerating bacteria and viruses by epifluorescence microscopy. Aquat Microb Ecol 43:223–231

    Article  Google Scholar 

  • Tanaka Y, Miyajima T, Ogawa H (2008a) Bacterial degradability of dissolved organic carbon in coral mucus. Proc 11th Int Coral Reef Symp 2:945–949

  • Tanaka Y, Ogawa H, Miyajima T (2010) Effects of nutrient enrichment on the release of dissolved organic carbon and nitrogen by the scleractinian coral Montipora digitata. Coral Reefs 29:675–682

    Article  Google Scholar 

  • Tanaka Y, Ogawa H, Miyajima T (2011) Bacterial decomposition of coral mucus as evaluated by long-term and quantitative observation. Coral Reefs 30:443–449

    Article  Google Scholar 

  • Tanaka Y, Miyajima T, Koike I, Hayashibara T, Ogawa H (2008b) Production of dissolved and particulate organic matter by the reef-building corals Porites cylindrica and Acropora pulchra. Bull Mar Sci 82:237–245

    Google Scholar 

  • Tanaka Y, Miyajima T, Umezawa Y, Hayashibara T, Ogawa H, Koike I (2009) Net release of dissolved organic matter by the scleractinian coral Acropora pulchra. J Exp Mar Bio Ecol 377:101–106

    Article  CAS  Google Scholar 

  • Taniguchi A, Yoshida T, Eguchi M (2014) Bacterial production is enhanced by coral mucus in reef systems. J Exp Mar Bio Ecol 461:331–336

    Article  CAS  Google Scholar 

  • van Duyl FC, Gast GJ (2001) Linkage of small-scale spatial variations in DOC, inorganic nutrients and bacterioplankton growth with different coral reef water types. Aquat Microb Ecol 24:17–26

    Article  Google Scholar 

  • Wild C, Naumann M, Niggl W, Haas A (2010) Carbohydrate composition of mucus released by scleractinian warm-and cold-water reef corals. Aquat Biol 10:41–45

    Article  Google Scholar 

  • Wild C, Huettel M, Klueter A, Kremb SG, Rasheed MYM, Jørgensen BB (2004) Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature 428:66–70

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank F. Azam (Scripps Institution of Oceanography) and two anonymous reviewers for critical reading and helpful comments on this manuscript; I. Mimura, N. Nakatomi, Y. Tadokoro and K. Ohtaka for their help in sampling or sample analysis; A. Tsugi and K. Nagamoto for providing temperature and light data; K. Okaji for providing modular roller apparatus; and staff at the Sesoko Station for supporting this research. This study was partially supported by Asahi Group Foundation, JSPS KAKENHI Grant (No. 26870916), and JSPS Fellowship for Research Abroad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryota Nakajima.

Additional information

Communicated by Biology Editor Dr. Simon Davy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakajima, R., Tanaka, Y., Guillemette, R. et al. Effects of coral-derived organic matter on the growth of bacterioplankton and heterotrophic nanoflagellates. Coral Reefs 36, 1171–1179 (2017). https://doi.org/10.1007/s00338-017-1608-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-017-1608-3

Keywords

Navigation