Skip to main content

Advertisement

Log in

Genetics of murine type 2 diabetes and comorbidities

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Type 2 diabetes (T2D) is a polygenic and multifactorial complex disease, defined as chronic metabolic disorder. It's a major global health concern with an estimated 463 million adults aged 20–79 years with diabetes and projected to increase up to 700 million by 2045. T2D was reported to be one of the four leading causes of non-communicable disease (NCD) deaths in 2012. Environmental factors play a part in the development of polygenic forms of diabetes. Polygenic forms of diabetes often run-in families. Fortunately, T2D, which accounts for 90–95% of the entire four types of diabetes including, Type 1 diabetes (T1D), T2D, monogenic diabetes syndromes (MGDS), and Gestational diabetes mellitus, can be prevented or delayed through nutrition and lifestyle changes as well as through pharmacologic interventions. Typical symptom of the T2D is high blood glucose levels and comprehensive insulin resistance of the body, producing an impaired glucose tolerance. Impaired glucose tolerance of T2D is accompanied by extensive health complications, including cardiovascular diseases (CVD) that vary in morbidity and mortality among populations. The pathogenesis of T2D varies between populations and/or ethnic groupings and is known to be attributed extremely by genetic components and environmental factors. It is evident that genetic background plays a critical role in determining the host response toward certain environmental conditions, whether or not of developing T2D (susceptibility versus resistant). T2D is considered as a silent disease that can progress for years before its diagnosis. Once T2D is diagnosed, many metabolic malfunctions are observed whether as side effects or as independent comorbidity. Mouse models have been proven to be a powerful tool for mapping genetic factors that underline the susceptibility to T2D development as well its comorbidities. Here, we have conducted a comprehensive search throughout the published data covering the time span from early 1990s till the time of writing this review, for already reported quantitative trait locus (QTL) associated with murine T2D and comorbidities in different mouse models, which contain different genetic backgrounds. Our search has resulted in finding 54 QTLs associated with T2D in addition to 72 QTLs associated with comorbidities associated with the disease. We summarized the genomic locations of these mapped QTLs in graphical formats, so as to show the overlapping positions between of these mapped QTLs, which may suggest that some of these QTLs could be underlined by sharing gene/s. Finally, we reviewed and addressed published reports that show the success of translation of the identified mouse QTLs/genes associated with the disease in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abu-Toamih Atamni HJ, Botzman M, Mott R, Gat-Viks I, Iraqi FA (2016) Mapping liver fat female-dependent quantitative trait loci in collaborative cross mice. Mamm Genome 27(11–12):565–573. https://doi.org/10.1007/s00335-016-9658-3

    Article  CAS  Google Scholar 

  • Abu-Toamih Atamni HJ, Kontogianni G, Binenbaum I, Mott R, Himmelbauer H, Lehrach H, Chatziioannou A, Iraqi FA (2019) Hepatic gene expression variations in response to high-fat diet-induced impaired glucose tolerance using RNAseq analysis in collaborative cross mouse population. Mamm Genome 30(9–10):260–275. https://doi.org/10.1007/s00335-019-09816-1

    Article  CAS  PubMed  Google Scholar 

  • Abu-Toamih Atamni HJ, Ziner Y, Mott R, Wolf L, Iraqi FA (2017) Glucose tolerance female-specific QTL mapped in collaborative cross mice. Mamm Genome.

  • American Diabetes Association (ADA) (2020) Prevention or delay of type 2 diabetes: standards of medical care in diabetes-2020. Diabetes Care 43(Supplement 1):S32–S36. https://doi.org/10.2337/dc20-S003

    Article  Google Scholar 

  • American Diabetes Association (ADA) (2021) Classification and diagnosis of diabetes: standards of medical care in diabetes. Diabetes Care 44(1):15–33. https://doi.org/10.2337/dc21-S002

    Article  Google Scholar 

  • Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA (2009) International Diabetes Federation Task Force on Epidemiology and Prevention; Hational Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; International Association for the Study of Obesity. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120(16):1640–1645

  • Allan MF, Eisen EJ, Pomp D (2005) Genomic mapping of direct and correlated responses to long-term selection for rapid growth rate in mice. Genetics 170:1863–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angulo P, Hui JM, Marchesini G et al (2007) The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology 45:846–854

    Article  CAS  PubMed  Google Scholar 

  • Argo CK, Northup PG, Al-Osaimi AMS, Caldwell SH (2009) Systematic review of risk factors for fibrosis progression in non-alcoholic steatohepatitis. J Hepatol 51:371–379

    Article  CAS  PubMed  Google Scholar 

  • Aylor DL, Valdar W, Foulds-Mathes W et al (2011) Genetic analysis of complex traits in the emerging Collaborative Cross. Genome Res 21:1213–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balmer LA, Whiting R, Rudnicka C, Gallo LA, Jandeleit KA, Chow Y, Chow Z, Richardson KL, Forbes JM, Morahan G (2019) Genetic characterization of early renal changes in a novel mouse model of diabetic kidney disease. Kidney Int 96(4):918–926. https://doi.org/10.1016/j.kint.2019.04.031

    Article  CAS  PubMed  Google Scholar 

  • Binenbaum I, Atamni HA, Fotakis G, Kontogianni G, Koutsandreas T, Pilalis E, Mott R, Himmelbauer H, Iraqi FA, Chatziioannou AA (2020) Container-aided integrative QTL and RNA-seq analysis of Collaborative Cross mice supports distinct sex-oriented molecular modes of response in obesity. BMC Genom 21(1):761. https://doi.org/10.1186/s12864-020-07173-x

    Article  CAS  Google Scholar 

  • Blankenhorn EP, Rodemich L, Martin-Fernandez C, Leif J, Greiner DL, Mordes JP (2005) The rat diabetes susceptibility locus Iddm4 and at least one additional gene are required for autoimmune diabetes induced by viral infection. Diabetes 54(4):1233–1237. https://doi.org/10.2337/diabetes.54.4.1233

    Article  CAS  PubMed  Google Scholar 

  • Blizard DA et al (2009) Blood pressure and heart rate QTL in mice of the B6/D2 lineage: sex differences and environmental influences. Physiol Genom 36(3):158–166

    Article  CAS  Google Scholar 

  • Bottomly D, Ferris MT, Aicher LD et al (2012) Expression quantitative trait loci for extreme host response to influenza a in pre-collaborative cross mice. G3 2:213–221

    Article  PubMed  PubMed Central  Google Scholar 

  • Bowden DW et al (2006) Coincident linkage of type 2 diabetes, metabolic syndrome and measures of cardiovascular disease in a genome scan of the diabetes heart study. Diabetes 55:1985–1994

    Article  CAS  PubMed  Google Scholar 

  • Boza CA, Riquelme L et al (2005) Predictors of nonalcoholic steatohepatitis (NASH) in obese patients undergoing gastric bypass. Obes Surg 15:1148–1153

    Article  PubMed  Google Scholar 

  • Brockmann GA, Kratzsch J, Haley CS, Renne U, Schwerin M, Karle S (2000) Single QTL effects, epistasis, and pleiotropy account for two-thirds of the phenotypic F2 variance of growth and obesity in DU6i _ DBA/2 mice. Genome Res 10:1941–1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodnicki TC, Quirk F, Morahan GA (2003) susceptibility allele from a non-diabetes-prone mouse strain accelerates diabetes in NOD congenic mice. Diabetes 52:218–222

    Article  CAS  PubMed  Google Scholar 

  • Brownlee M et al (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625

    Article  CAS  PubMed  Google Scholar 

  • Buchner DA, Nadeau JH (2015) Contrasting genetic architectures in different mouse reference populations used for studying complex traits. Genome Res 25(6):775–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buse JB, Ginsberg HN, Bakris GL, Clark NG, Costa F, Eckel R (2007) Primary prevention of cardiovascular diseases in people with diabetes mellitus: a scientific statement from the American Heart Association and the American Diabetes Association. Circulation 115(1):114–126

    Article  PubMed  Google Scholar 

  • Centers for Disease Control and Prevention (CDC ) (2020) National Diabetes Statistics Report, 2020. Estimates of Diabetes and Its Burden in the United States. https://www.cdc.gov/diabetes/data/statistics-report/index.html

  • Chen Y, Rollins J, Paigen B, Wang X (2007) Genetic and genomic insights into the molecular basis of atherosclerosis. Cell Metab 6:164–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheverud JM, Ehrich TH et al (2004) Quantitative trait loci for obesity- and diabetes-related traits and their dietary responses to high-fat feeding in LGXSM recombinant inbred mouse strains. Diabetes 53:2328–2336

    Google Scholar 

  • Collaborative Cross Consortium (2012) The genome architecture of the collaborative cross mouse genetic reference population. Genetics 190:389–401

    Article  PubMed Central  CAS  Google Scholar 

  • Collin GB, Maddatu TP, Sen S, Naggert JK (2005) Genetic modifiers interact with Cpefat to affect body weight, adiposity, and hyperglycemia. Physiol Genom 22:182–190

    Article  CAS  Google Scholar 

  • Dagogo-Jack S (2003) Ethnic disparities in type 2 diabetes: pathophysiology and implications for prevention and management. J Natl Med Assoc 95:774–789

    PubMed  PubMed Central  Google Scholar 

  • Darvasi A, Soller M (1995) Advanced inter-cross lines, an experimental population for fine genetic mapping. Genetics 141(3):1199–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Mooij-van Malsen AJ, van Lith HA, Oppelaar H et al (2009) Interspecies trait genetics reveals association of Adcy8 with mouse avoidance behavior and a human mood disorder. Biol Psychiatry 66:1123–1130

    Article  PubMed  CAS  Google Scholar 

  • Denvir J, Boskovic G, Fan J, Primerano DA, Parkman JK, Kim JH (2016) Whole genome sequence analysis of the TALLYHO/Jng mouse. BMC Genomics 17:907. https://doi.org/10.1186/s12864-016-3245-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derry JM, Zhong H, Molony C, MacNeil D, Guhathakurta D, Zhang B, Mudgett J, Small K, El Fertak L, Guimond A, Selloum M, Zhao W, Champy MF, Monassier L, Vogt T, Cully D, Kasarskis A, Schadt EE (2010) Identification of genes and networks driving cardiovascular and metabolic phenotypes in a mouse F2 intercross. PLoS ONE 5(12):e14319. https://doi.org/10.1371/journal.pone.0014319.PMID:21179467;PMCID:PMC3001864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Després JP, Lemieux I (2006) Abdominal obesity and metabolic syndrome. Nature 444(7121):881–887

    Article  PubMed  CAS  Google Scholar 

  • Durrant C, Tayem H, Yalcin B et al (2011) Collaborative Cross mice and their power to map host susceptibility to Aspergillus fumigatus infection. Genome Res 21:1239–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrich TH, Hrbek T, Kenney-Hunt JP, Pletscher LS, Wang B, Semenkovich CF, Cheverud JM (2005) Fine-mapping gene-by-diet interactions on chromosome 13 in a LG/J x SM/J murine model of obesity. Diabetes 54:1863–1872

    Article  CAS  PubMed  Google Scholar 

  • Feng M, Deerhake ME, Keating R, Thaisz J, Xu L, Tsaih SW, Smith R, Ishige T, Sugiyama F, Churchill GA, DiPetrillo K (2009) Genetic analysis of blood pressure in 8 mouse intercross populations. Hypertension 54(4):802–809. https://doi.org/10.1161/HYPERTENSIONAHA.109.134569

    Article  CAS  PubMed  Google Scholar 

  • Flisiak-Jackiewicz M, Bobrus-Chociej A, Wasilewska AN, Lebensztejn DM (2021) From nonalcoholic fatty liver disease (NAFLD) to metabolic dysfunction-associated fatty liver disease (MAFLD)—new terminology in pediatric patients as a step in good scientific direction? J Clin Med 10:924. https://doi.org/10.3390/jcm10050924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frayling TM et al (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316:889–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giesen K, Plum L, Kluge R, Ortlepp J, Joost H-G (2003) Diet-dependent obesity and hypercholesterolemia in the New Zealand obese mouse: identification of a quantitative trait locus for elevated serum cholesterol on the distal mouse chromosome 5. Biochem Biophys Res Commun 304:812–817

    Article  CAS  PubMed  Google Scholar 

  • Grant SF et al (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38:320–323

    Article  CAS  PubMed  Google Scholar 

  • Gregg EW, Sattar N, Ali MK (2016a) The changing face of diabetes complications. Lancet Diabetes Endocrinol 4(6):537–547

    Article  PubMed  Google Scholar 

  • Haentjens PD, Massaad H, Reynaert, et al (2009) Identifying non-alcoholic fatty liver disease among asymptomatic overweight and obese individuals by clinical and biochemical characteristics. Acta Clin Belg 64:483–493

    Article  CAS  PubMed  Google Scholar 

  • Hanley AJ, Williams K, Festa A et al (2005) Liver markers and development of the metabolic syndrome: the insulin resistance atherosclerosis study. Diabetes 54:3140–3147

    Article  CAS  PubMed  Google Scholar 

  • Hirayama I, Yi Z, Izumi S, Arai I, Suzuki W, Nagamachi Y, Kuwano H, Takeuchi T, Izumi T (1999) Genetic analysis of obese diabetes in the TSOD mouse. Diabetes 48:1183–1191

    Article  CAS  PubMed  Google Scholar 

  • Holdt LM, Thiery J, Breslow JL, Teupser D (2008) Increased ADAM17 mRNA expression and activity is associated with atherosclerosis resistance in LDL-receptor deficient mice. Arterioscler Thrombs Vasc Biol 28:1097–1103

    Article  CAS  Google Scholar 

  • Horvat S et al (2000) Mapping of obesity QTLs in a cross between mouse lines divergently selected on fat content. Mamm Genome 11:2–7

    Article  CAS  PubMed  Google Scholar 

  • Hruby A, Hu FB (2015) The epidemiology of obesity: a big picture. Pharmacoeconomics 33(7):673–689. https://doi.org/10.1007/s40273-014-0243-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang W, Ramsey KM, Marcheva B, Bass J (2011) Circadian rhythms, sleep, and metabolism. J Clin Invest 121:2133–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa A, Kim EH, Bolor H, Mollah MBR, Namikawa T (2007) A growth QTL (Pbwg1) region of mouse chromosome 2 contains closely linked loci affecting growth and body composition. Mamm Genome 18:229–239

    Article  CAS  PubMed  Google Scholar 

  • Joost HG, Schürmann A (2014) The genetic basis of obesity-associated type 2 diabetes (diabesity) in polygenic mouse models. Mamm Genome 25(9–10):401–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joost HG (2010) The genetic basis of obesity and type 2 diabetes: lessons from the New Zealand obese mouse, a polygenic model of the metabolic syndrome. Sens Metab Control Energy Bal. https://doi.org/10.1007/978-3-642-14426-4_1

    Article  Google Scholar 

  • Kaul N, Ali S (2016) Genes, genetics, and environment in type 2 diabetes: Impl. DNA Cell Biol 35(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Kayo T, Fujita H, Nozaki J et al (2000) Identification of two chromosomal loci determining glucose intolerance in a C57BL/6 mouse strain. Comp Med 50:296–302

    CAS  PubMed  Google Scholar 

  • Keane T, Goodstadt L, Danecek P et al (2011) Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477:289–294. https://doi.org/10.1038/nature10413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelada SN, Aylor DL, Peck BC et al (2012) Genetic analysis of hematological parameters in incipient lines of the collaborative cross. G3 2:157–165

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim JH, Sen S, Avery CS, Simpson E, Chandler P, Nishina PM, Churchill GA, Naggert JK (2001) Genetic analysis of a new mouse model for non-insulin-dependent diabetes. Genomics 74:273–286

    Article  CAS  PubMed  Google Scholar 

  • Kluge R, Giesen K, Bahrenberg G, Plum L, Ortlepp JR, Joost HG (2000) Quantitative trait loci for obesity and insulin resistance (Nob1, Nob2) and their interaction with the leptin receptor allele (LeprA720T/T1044I) in New Zealand obese mice. Diabetologia 43:1565–1572

    Article  CAS  PubMed  Google Scholar 

  • Kluth O et al (2019) Decreased expression of cilia genes in pancreatic islets as a risk factor for type 2 diabetes in mice and humans. Cell 26:3027–3036

    CAS  Google Scholar 

  • Kobayashi M, Io F, Kawai T, Kumazawa M, Ikegami H, Nishimura M, Ohno T, Horio F (2006) Major quantitative trait locus on chromosome 2 for glucose tolerance in diabetic SMXA-5 mouse established from non-diabetic SM/J and A/J strains. Diabetologia 49:486–495

    Article  CAS  PubMed  Google Scholar 

  • Koch W, Hoppmann P, Mueller JC, Schömig A, Kastrati A (2008) Lack of support for association between common variation in TNFSF4 and myocardial infarction in a German population. Nat Genet 40:1386–1387

    Article  CAS  PubMed  Google Scholar 

  • Koutnikova H, Laakso M, Lu L et al (2009) Identification of the UBP1 locus as a critical blood pressure determi- nant using a combination of mouse and human genetics. PLoS Genet 5:1000591

    Article  CAS  Google Scholar 

  • Kristiansson K, Perola M, Tikkanen E et al (2012) Genome-wide screen for metabolic syndrome susceptibility loci reveals strong lipid gene contribution but no evidence for common genetic basis for clustering of metabolic syndrome traits. Circ Cardiovasc Genet 5:242–249

    Article  PubMed  PubMed Central  Google Scholar 

  • Leiter EH, Reifsnyder PC, Flurkey K, Partke HJ, Junger E, Herberg L (1998) NIDDM genes in mice: deleterious synergism by both parental genomes contributes to diabetogenic thresholds. Diabetes 47:1287–1295

    Article  CAS  PubMed  Google Scholar 

  • Ling W, Huang Y, Huang YM et al (2020) Global trend of diabetes mortality attributed to vascular complications, 2000–2016. Cardiovasc Diabetol 19:182

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo N, Liu SM, Liu H, Li Q, Xu Q, Sun X, Davis B, Li J, Chua S Jr (2006) Allelic variation on chromosome 5 controls-cell mass expansion during hyperglycemia in leptin receptor-deficient diabetes mice. Endocrinology 147:2287–2295

    Article  CAS  PubMed  Google Scholar 

  • Marceau P, Biron S, Hould FS et al (1999) Liver pathology and the metabolic syndrome X in severe obesity. J Clin Endocrinol Metabol 84:1513–1517

    Article  CAS  Google Scholar 

  • Marott SC, Nordestgaard BG, Tybjærg-Hansen A, Benn M (2016) Components of the metabolic syndrome and risk of type 2 diabetes. J Clin Endocrinol Metab 101(8):3212–3221

    Article  CAS  PubMed  Google Scholar 

  • Masahide H, Takao K, Akihiro O, Takahiro K, Hiroshi S, Michiaki F (2012) Identification of individuals with non-alcoholic fatty liver disease by the diagnostic criteria for the metabolic syndrome. World J Gastroenterol 18(13):1508–1516

    Article  CAS  Google Scholar 

  • Mathers CD, Loncar D (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3(11):442

    Article  Google Scholar 

  • McAleer MA, Reifsnyder P, Palmer SM, Prochazka M, Love JM, Copeman JB, Powell EE, Rodrigues NR, Prins JB, Serreze DV, DeLarato NH, Wicker LS, Peterson LB, Schork NJ, Todd JA, Leiter EH (1995) Crosses of NOD mice with the related NON strain - a polygenic model for IDDM. Diabetes 44:1186–1195

    Article  CAS  PubMed  Google Scholar 

  • Mehrabian M, Wen PZ, Fisler J, Davis RC, Lusis AJ (1998) Genetic loci controlling body fat, lipoprotein metabolism, and insulin levels in a multifactorial mouse model. J Clin Invest 101:2485–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyre D, Farge M, Lecoeur C, Proenca C, Durand E, Allegaert F, Tichet J, Marre M, Balkau B, Weill J, Delplanque J, Froguel P (2008) R125W coding variant in TBC1D1 confers risk for familial obesity and contributes to linkage on chromosome 4p14 in the French population. Hum Mol Genet 17:1798–1802

    Article  CAS  PubMed  Google Scholar 

  • Miranda-Lora AL, Vilchis-Gil J et al (2021) A Genetic Risk score improves the prediction of type 2 diabetes mellitus in Mexican youths but has lower predictive utility compared with non-genetic factors. Front Endocrinol 12:647864. https://doi.org/10.3389/fendo.2021.647864

    Article  Google Scholar 

  • Mizutani S, Gomi H, Hirayama I, Izumi T (2006) Chromosome 2 locus Nidd5 has a potent effect on adiposity in the TSOD mouse. Mamm Genom 17:375–384

    Article  CAS  Google Scholar 

  • Nica AC, Dermitzakis ET (2013) Expression quantitative trait loci: present and future. Philos Trans R Soc B 368(1620):20120362

    Article  CAS  Google Scholar 

  • Padilla-Martínez F, Collin F, Kwasniewski M, Kretowski A (2020) Systematic review of polygenic risk scores for type 1 and type 2 diabetes. Int J Mol Sci 21:1703. https://doi.org/10.3390/ijms21051703

    Article  CAS  PubMed Central  Google Scholar 

  • Parker CC, Cheng R, Sokoloff G, Palmer AA (2012) Genome-wide association for methamphetamine sensitivity in an advanced intercross mouse line. Genes Brain Behav 11(1):52–61. https://doi.org/10.1111/j.1601-183X.2011.00747.x

    Article  CAS  PubMed  Google Scholar 

  • Peirce JL, Lu L, Gu J, Silver LM, Williams RW (2004) A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet 5:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Philip VM, Sokoloff G, Ackert-Bicknell CL et al (2011) Genetic analysis in the collaborative cross breeding population. Genome Res 21:1223–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plum L, Kluge R, Giesen K, Altmuller J, Ortlepp JR, Joost HG (2000) Type 2 diabetes-like hyperglycemia in a backcross model of NZO and SJL mice: characterization of a susceptibility locus on chromosome 4 and its relation with obesity. Diabetes 49:1590–1596

    Article  CAS  PubMed  Google Scholar 

  • Poot M, Badea A, Williams RW, Kas MJ (2011) Identifying human disease genes through cross-species gene mapping of evolutionary conserved processes. PLoS ONE 6:e18612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poznyak AV, Grechko AV, Wetzker R, Orekhov AN (2020) In search for genes related to atherosclerosis and dyslipidemia using animal models. Int J Mol Sci 21(6):2097. https://doi.org/10.3390/ijms21062097

    Article  CAS  PubMed Central  Google Scholar 

  • Ramachandrappa S, Farooqi IS (2011) Genetic approaches to understanding human obesity. J Clin Investig 121(6):2080–2086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reaven GM (1988) Banting lecture 1988 Role of insulin resistance in human disease. Diabetes 37:1595–1607

    Article  CAS  PubMed  Google Scholar 

  • Reifsnyder PC, Leiter EH (2002) Deconstructing and reconstructing obesity-induced diabetes (diabesity) in mice. Diabetes 51:825–832

    Article  CAS  PubMed  Google Scholar 

  • Rockman MV, Kruglyak L (2006) Genetics of global gene expression. Nat Rev Genet 7(11):862–872

    Article  CAS  PubMed  Google Scholar 

  • Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, Shaw JE, Bright D, Williams R (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. https://doi.org/10.1016/j.diabres.2019.107843

    Article  PubMed  Google Scholar 

  • Samsom M, Trivedi T, Orekoya O, Vyas S (2016) Understanding the importance of gene and environment in the etiology and prevention of type 2 diabetes mellitus in high-risk populations. Oral Health Case Rep. 2(1):112

    PubMed  PubMed Central  Google Scholar 

  • Sandholt CH, Hansen T, Pedersen O (2012) Beyond the fourth wave of genome-wide obesity association studies. Nutr Diabetes 2(7):e37. https://doi.org/10.1038/nutd.2012.9.PMID:23168490;PMCID:PMC3408643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena R et al (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316:1331–1336

    Article  CAS  PubMed  Google Scholar 

  • Schmidt C, Gonzaludo NP, Strunk S, Dahm S, Schuchhard J, Kleinjung F, Wuschke S, Joost HG, Al-Hasani H (2008a) A metaanalysis of QTL for diabetes related traits in rodents. Physiol Genom 34:42–53

    Article  CAS  Google Scholar 

  • Schmidt C, Gonzaludo NP, Strunk S, Dahm S, Schuchhardt J, Kleinjung F (2008b) A meta-analysis of QTL for diabetes-related traits in rodents. Physiol Genom 34(1):42–53

    Article  CAS  Google Scholar 

  • Schughart L, Libert C, Consortium S, Kas M (2013) Controlling complexity: the clinical relevance of mouse complex genetics. Eur J Hum Genet 21:1191–1196

    Article  CAS  Google Scholar 

  • Scott LJ et al (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 222:222–223

    Google Scholar 

  • Shike T, Hirose S, Kobayashi M, Funabiki K, Shirai T, Tomino Y (2001) Susceptibility and negative epistatic loci contributing to type 2 diabetes and related phenotypes in a KK/Ta mouse model. Diabetes 50:1943–1948

    Article  CAS  PubMed  Google Scholar 

  • Sladek R et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445:881–885

    Article  CAS  PubMed  Google Scholar 

  • Smith Richards BK, Belton BN, Poole AC, Mancuso JJ, Churchill GA, Li R, Volaufova J, Zuberi A, York B (2002) QTL analysis of self-selected macronutrient diet intake: fat, carbohydrate, and total kilocalories. Physiol Genom 11:205–217

    Article  CAS  Google Scholar 

  • Solberg LC, Valdar W, Gauguier D, Nunez G, Taylor A, Burnett S et al (2006) A protocol for high-throughput phenotyping, suitable for quantitative trait analysis in mice. Mamm Genome 17(2):129–146

    Article  PubMed  Google Scholar 

  • Solberg Woods LC, Mott R (2017) Heterogeneous stock populations for analysis of complex traits. Methods Mol Biol 1488:31–44. https://doi.org/10.1007/978-1-4939-6427-7_2.PMID:27933519;PMCID:PMC5869698

    Article  PubMed Central  Google Scholar 

  • Steinthorsdottir V et al (2007) A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet 39:770–775

    Article  CAS  PubMed  Google Scholar 

  • Stoehr JP, Nadler ST, Schueler KL, Rabaglia ME, Yandell BS, Metz SA, Attie AD (2000) Genetic obesity unmasks nonlinear interactions between murine type 2 diabetes susceptibility loci. Diabetes 49:1946–1954

    Article  CAS  PubMed  Google Scholar 

  • Stone S, Abkevich V, Russell DL, Riley R, Timms K, Tran T, Trem D, Frank D, Jammulapati S, Neff CD, Iliev D, Gress R, He G, Frech GC, Adams TD, Skolnick MH, Lanchbury JS, Gutin A, Hunt SC, Shattuck D (2006) TBC1D1 is a candidate for a severe obesity gene and evidence for a gene/gene interaction in obesity predisposition. Hum Mol Genet 15:2709–2720

    Article  CAS  PubMed  Google Scholar 

  • Suto J, Matsuura S, Imamura K, Yamanaka H, Sekikawa K (1998) Genetic analysis of non-insulin-dependent diabetes mellitus in KK and KK-Ay mice. Eur J Endocrinol 139:654–661

    Article  CAS  PubMed  Google Scholar 

  • Suto J, Sekikawa K (2002) A quantitative trait locus that accounts for glucose intolerance maps to chromosome 8 in hereditary obese KK-A(y) mice. Int J Obes Relat Metab Disord 26(11):1517–1519

    Article  CAS  PubMed  Google Scholar 

  • Svenson KL, Gatti DM, Valdar W, Welsh CE, Cheng R, Chesler EJ, Palmer AA, McMillan L, Churchill GA (2012) High-resolution genetic mapping using the mouse diversity outbred population. Genetics 190(2):437–447. https://doi.org/10.1534/genetics.111.132597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeshita S, Moritani M, Kunika K, Inoue H, Itakura M (2006) Diabetic modifier QTLs identified in F2 intercrosses between Akita and A/J mice. Mamm Genome 17:927–940

    Article  CAS  PubMed  Google Scholar 

  • Taylor BA et al (1999a) Gender-influenced obesity QTLs identified in a cross involving the KK type II diabetes prone mouse strain. Mamm Genome 10:963–968

    Article  CAS  PubMed  Google Scholar 

  • Taylor BA et al (2001) Multiple obesity QTLs identified in an intercross between NZO (New Zealand obese) and the SM (small) mouse strains. Mamm Genome 12:95–103

    Article  CAS  PubMed  Google Scholar 

  • Taylor BA, Phillips SJ (1997) Obesity QTLs on Mouse Chromosomes 2 and 17. Genomics 43:249–257

    Article  CAS  PubMed  Google Scholar 

  • Taylor BA, Wnek C, Kotlus BS, Roeme rN, MacTaggart T, Phillips SJ, (1999b) Genotyping new BXD recombinant inbred mouse strains and comparison of BXD and consensus maps. Mamm Genome 10:335–348

    Article  CAS  PubMed  Google Scholar 

  • Toye AA, Lippiat JD, Proks P, Shimomura K, Bentley L, Hugill A, Mijat V, Goldsworthy M, Moir L, Haynes A, Quarterman J, Freeman HC, Ashcroft FM, Cox RD (2005) A genetic and physiological study of impaired glucose homeostasis control in C57BL/6J mice. Diabetologia 48:675–686

    Article  CAS  PubMed  Google Scholar 

  • Ueda H, Ikegami H, Kawaguchi Y, Fujisawa T, Yamato E, Shibata M, Ogihara T (1999) Genetic analysis of late-onset type 2 diabetes in a mouse model of human complex trait. Diabetes 48:1168–1174

    Article  CAS  PubMed  Google Scholar 

  • Valanejad L, Ghareeb M, Shiffka S et al (2017) (2017) Dysregulation of Delta4-3-oxosteroid 5beta-reductase in diabetic patients: Implications and mechanisms. Mol Cell Endocrinol 15:127–141

    Google Scholar 

  • Wallner EI, Wada J, Tramonti G et al (2001) Relevance of aldo-keto reductase family members to the pathobiology of diabetic nephropathy and renal development. Ren Fail 23:311–320

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Ria M, Kelmenson PM et al (2005a) Positional identification of TNFSF4, encoding OX40 ligand, as a gene that influences atherosclerosis susceptibility. Nat Genet 37:365–372

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Beydoun MA, Liang L et al (2008) (2008) Will all Americans become overweight or obese? Estimating the progression and cost of the U.S. obesity epidemic. Obesity 16:2323–2330

    Article  PubMed  Google Scholar 

  • Wang X, Ria M, Kelmenson PM, Eriksson P, Higgins DC, Samnegård A, Petros C, Rollins J, Bennet AM, Wiman B et al (2005b) Positional identification of TNFSF4, encoding OX40 ligand, as a gene that influences atherosclerosis susceptibility. Nat Genet 37:365–372

    Article  CAS  PubMed  Google Scholar 

  • Warden CH et al (1995) Identification of four chromosomal loci determining obesity in a multifactorial mouse model. J Clin Invest 95:1545–1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO Regional Committee for Europe resolution EUR/RC66/11 on an action plan for the prevention and control of noncommunicable diseases in the WHO European Region. Copenhagen: WHO Regional Office for Europe; 2016 http://www.euro.who.int/en/about-us/governance/regional-committee-for-europe/past-sessions/66th-session/documentation/workingdocuments/eurrc6611-action-plan-for-the-prevention-and-control-of-noncommunicable-diseases-in-the-who-european-region. Accessed 29 Aug 2017

  • Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27(5):1047–1053

    Article  PubMed  Google Scholar 

  • Wuschke S, Dahm S, Schmidt C, Joost HG, Al-Hasani H (2007) A metaanalysis of QTL associated with body weight and adiposity. Int J Obes 31:829–841

    Article  CAS  Google Scholar 

  • Yalcin B, Flint J (2012) Association studies in outbred mice in a new era of full-genome sequencing. Mamm Genom 23(9–10):719–726. https://doi.org/10.1007/s00335-012-9409-z

    Article  CAS  Google Scholar 

  • Yu EA, Weaver DR (2011) Disrupting the circadian clock: gene-specific effects on aging, cancer, and other phenotypes. Aging 3:479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL et al (2008) Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 40:638–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Korstanje R, Thaisz J, Staedtler F, Harttman N, Xu L, Feng M, Yanas L, Yang H, Valdar W, Churchill GA, Dipetrillo K (2012) Genome-wide association mapping of quantitative traits in outbred mice. G3 2(2):167–174. https://doi.org/10.1534/g3.111.001792

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors declare no competing financial interests or other associations that may pose a conflict of interest (e.g., pharmaceutical stock ownership, consultancy). This report was supported by Binational Science Foundation (BSF) grant number 2015077, German Israeli Science Foundation (GIF) grant I-63-410.20-2017, Israeli Science Foundation (ISF) grant 1085/18, and core fund form Tel-Aviv University. The authors thank Ms. Yasmeen Iraqi for her comments and suggestions on the report.

Author information

Authors and Affiliations

Authors

Contributions

IML involved in reviewing the literature and summarizing the findings, and MS preparation. FAI involved in the project design, data preparation, and MS preparation and approving its final version.

Corresponding author

Correspondence to Fuad A. Iraqi.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lone, I.M., Iraqi, F.A. Genetics of murine type 2 diabetes and comorbidities. Mamm Genome 33, 421–436 (2022). https://doi.org/10.1007/s00335-022-09948-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-022-09948-x

Navigation