Skip to main content
Log in

Construction and phenotypic analysis of mice carrying a duplication of the major histocompatibility class I (MHC-I) locus

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Copy number variation (CNV) has been associated increasingly with altered susceptibility to human disease. Large CNVs are likely to incur disease risk or resilience via predictable changes in gene dosage that are relatively straightforward to model using chromosomal engineering in mice. The classical class I major histocompatibility locus (MHC-I) contains a dense set of genes essential for innate immune system function in vertebrates. MHC-I genes are highly polymorphic and genetic variation in the region is associated with altered susceptibility to a wide variety of common diseases. Here we investigated the role of gene dosage within MHC-I on susceptibility to disease by engineering a mouse line carrying a 1.9-Mb duplication of this region [called Dp(MHC-I)]. Extensive phenotypic analysis of heterozygous (3N) Dp(MHC-I) animals did not reveal altered blood and stem cell parameters, susceptibility to high-fat diet, death by cancer, or contact dermatitis. However, several measures of disease severity in a model of atherosclerosis were improved, suggesting dosage-sensitive modulators of cardiovascular disease. Homozygous Dp(MHC-I)/Dp(MHC-I) mice demonstrated embryonic lethality. These mice serve as a model for studying the consequences of targeted gene dosage alteration in MHC-I with functional and evolutionary implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams DJ, Biggs PJ et al (2004) Mutagenic insertion and chromosome engineering resource (MICER). Nat Genet 36(8):867–871

    Article  PubMed  CAS  Google Scholar 

  • Akashi K, Traver D et al (2000) A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404(6774):193–197

    Article  PubMed  CAS  Google Scholar 

  • Apanius V, Penn D et al (1997) The nature of selection on the major histocompatibility complex. Crit Rev Immunol 17(2):179–224

    Article  PubMed  CAS  Google Scholar 

  • Asano K, Matsushita T et al (2009) A genome-wide association study identifies three new susceptibility loci for ulcerative colitis in the Japanese population. Nat Genet 41(12):1325–1329

    Article  PubMed  CAS  Google Scholar 

  • Bagchi A, Papazoglu C et al (2007) CHD5 is a tumor suppressor at human 1p36. Cell 128(3):459–475

    Article  PubMed  CAS  Google Scholar 

  • Beckmann JS, Estivill X et al (2007) Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability. Nat Rev Genet 8(8):639–646

    Article  PubMed  CAS  Google Scholar 

  • Beckmann JS, Sharp AJ et al (2008) CNVs and genetic medicine (excitement and consequences of a rediscovery). Cytogenet Genome Res 123(1–4):7–16

    Article  PubMed  CAS  Google Scholar 

  • Besson V, Brault V et al (2007) Modeling the monosomy for the telomeric part of human chromosome 21 reveals haploinsufficient genes modulating the inflammatory and airway responses. Hum Mol Genet 16(17):2040–2052

    Article  PubMed  CAS  Google Scholar 

  • Chaignat E, Yahya-Graison EA et al (2011) Copy number variation modifies expression time courses. Genome Res 21(1):106–113

    Article  PubMed  CAS  Google Scholar 

  • Christensen AD, Haase C (2012) Immunological mechanisms of contact hypersensitivity in mice. APMIS 120(1):1–27

    Article  PubMed  CAS  Google Scholar 

  • Davies RW, Wells GA et al (2012) A genome wide association study for coronary artery disease identifies a novel susceptibility locus in the major histocompatibility complex. Circ Cardiovasc Genet 5(2):217–225

    Article  PubMed  CAS  Google Scholar 

  • Dawkins R, Leelayuwat C et al (1999) Genomics of the major histocompatibility complex: haplotypes, duplication, retroviruses and disease. Immunol Rev 167:275–304

    Article  PubMed  CAS  Google Scholar 

  • Degenhardt Y, Huang J et al (2010) Distinct MHC gene expression patterns during progression of melanoma. Genes Chromosomes Cancer 49(2):144–154

    PubMed  CAS  Google Scholar 

  • Ermakova O, Piszczek L et al (2011) Sensitized phenotypic screening identifies gene dosage sensitive region on chromosome 11 that predisposes to disease in mice. EMBO Mol Med 3(1):50–66

    Article  PubMed  CAS  Google Scholar 

  • Henrichsen CN, Vinckenbosch N et al (2009) Segmental copy number variation shapes tissue transcriptomes. Nat Genet 41(4):424–429

    Article  PubMed  CAS  Google Scholar 

  • Horton R, Wilming L et al (2004) Gene map of the extended human MHC. Nat Rev Genet 5(12):889–899

    Article  PubMed  CAS  Google Scholar 

  • Itsara A, Cooper GM et al (2009) Population analysis of large copy number variants and hotspots of human genetic disease. Am J Hum Genet 84(2):148–161

    Article  PubMed  CAS  Google Scholar 

  • Jiang M, Li M et al (2008) Simultaneous detection of genomic and expression alterations in prostate cancer using cDNA microarray. Prostate 68(14):1496–1509

    Article  PubMed  CAS  Google Scholar 

  • Koolen DA, Vissers LE et al (2006) A new chromosome 17q21.31 microdeletion syndrome associated with a common inversion polymorphism. Nat Genet 38(9):999–1001

    Article  PubMed  CAS  Google Scholar 

  • Kubler K, Arndt PF et al (2008) Genetic alterations of HLA-class II in ovarian cancer. Int J Cancer 123(6):1350–1356

    Article  PubMed  Google Scholar 

  • Kulski JK, Shiina T et al (2002) Comparative genomic analysis of the MHC: the evolution of class I duplication blocks, diversity and complexity from shark to man. Immunol Rev 190:95–122

    Article  PubMed  CAS  Google Scholar 

  • Liu P, Zhang H et al (1998) Embryonic lethality and tumorigenesis caused by segmental aneuploidy on mouse chromosome 11. Genetics 150(3):1155–1168

    PubMed  CAS  Google Scholar 

  • Lutgens E, de Muinck D et al (2001) Compensatory enlargement and stenosis develop in apoE(−/−) and apoE*3-Leiden transgenic mice. Arterioscler Thromb Vasc Biol 21(8):1359–1365

    Article  PubMed  CAS  Google Scholar 

  • Moser AR, Dove WF et al (1992) The Min (multiple intestinal neoplasia) mutation: its effect on gut epithelial cell differentiation and interaction with a modifier system. J Cell Biol 116(6):1517–1526

    Article  PubMed  CAS  Google Scholar 

  • Nakatani J, Tamada K et al (2009) Abnormal behavior in a chromosome-engineered mouse model for human 15q11-13 duplication seen in autism. Cell 137(7):1235–1246

    Article  PubMed  Google Scholar 

  • Ni M, Zhang M et al (2008) Micro-ultrasound imaging assessment of carotid plaque characteristics in apolipoprotein-E knockout mice. Atherosclerosis 197(1):64–71

    Article  PubMed  CAS  Google Scholar 

  • Nichols J, Zevnik B et al (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95(3):379–391

    Article  PubMed  CAS  Google Scholar 

  • Niwa H, Miyazaki J et al (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24(4):372–376

    Article  PubMed  CAS  Google Scholar 

  • Orozco LD, Cokus SJ et al (2009) Copy number variation influences gene expression and metabolic traits in mice. Hum Mol Genet 18(21):4118–4129

    Article  PubMed  CAS  Google Scholar 

  • Prugnolle F, Manica A et al (2005) Pathogen-driven selection and worldwide HLA class I diversity. Curr Biol 15(11):1022–1027

    Article  PubMed  CAS  Google Scholar 

  • Ramirez-Solis R, Liu P et al (1995) Chromosome engineering in mice. Nature 378(6558):720–724

    Article  PubMed  CAS  Google Scholar 

  • Redon R, Ishikawa S et al (2006) Global variation in copy number in the human genome. Nature 444(7118):444–454

    Article  PubMed  CAS  Google Scholar 

  • Redshaw Z, Strain AJ (2010) Human haematopoietic stem cells express Oct4 pseudogenes and lack the ability to initiate Oct4 promoter-driven gene expression. J Negat Results Biomed 9(1):2

    Article  PubMed  Google Scholar 

  • Rioux JD, Goyette P et al (2009) Mapping of multiple susceptibility variants within the MHC region for 7 immune-mediated diseases. Proc Natl Acad Sci USA 106(44):18680–18685

    Article  PubMed  CAS  Google Scholar 

  • Santos J, Herranz M et al (1998) A new candidate site for a tumor suppressor gene involved in mouse thymic lymphomagenesis is located on the distal part of chromosome 4. Oncogene 17(7):925–929

    Article  PubMed  CAS  Google Scholar 

  • Seo HS, Lombardi DM et al (1997) Peripheral vascular stenosis in apolipoprotein E-deficient mice. Potential roles of lipid deposition, medial atrophy, and adventitial inflammation. Arterioscler Thromb Vasc Biol 17(12):3593–3601

    Article  PubMed  CAS  Google Scholar 

  • Solberg LC, Valdar W et al (2006) A protocol for high-throughput phenotyping, suitable for quantitative trait analysis in mice. Mamm Genome 17(2):129–146

    Article  PubMed  Google Scholar 

  • Stefansson H, Ophoff RA et al (2009) Common variants conferring risk of schizophrenia. Nature 460(7256):744–747

    PubMed  CAS  Google Scholar 

  • Stranger BE, Forrest MS et al (2007) Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315(5813):848–853

    Article  PubMed  CAS  Google Scholar 

  • Stylianou IM, Bauer RC et al (2012) Genetic basis of atherosclerosis: insights from mice and humans. Circ Res 110(2):337–355

    Article  PubMed  CAS  Google Scholar 

  • Tai MH, Chang CC et al (2005) Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis 26(2):495–502

    Article  PubMed  CAS  Google Scholar 

  • Taylor KE, Criswell LA (2009) Conditional analysis of the major histocompatibility complex in rheumatoid arthritis. BMC Proc 3(Suppl 7):S36

    Article  PubMed  Google Scholar 

  • Walker M 3rd, Campbell BR et al (2009) A novel 3-dimensional micro-ultrasound approach to automated measurement of carotid arterial plaque volume as a biomarker for experimental atherosclerosis. Atherosclerosis 204(1):55–65

    Article  PubMed  CAS  Google Scholar 

  • Walz K, Caratini-Rivera S et al (2003) Modeling del(17)(p11.2p11.2) and dup(17)(p11.2p11.2) contiguous gene syndromes by chromosome engineering in mice: phenotypic consequences of gene dosage imbalance. Mol Cell Biol 23(10):3646–3655

    Article  PubMed  CAS  Google Scholar 

  • Wikström J, Grönros J et al (2005) Functional and morphologic imaging of coronary atherosclerosis in living mice using high-resolution color Doppler echocardiography and ultrasound biomicroscopy. J Am Coll Cardiol 46(4):720–727

    Article  PubMed  Google Scholar 

  • Yu T, Li Z et al (2010) A mouse model of Down syndrome trisomic for all human chromosome 21 syntenic regions. Hum Mol Genet 19(14):2780–2791

    Article  PubMed  CAS  Google Scholar 

  • Zhang SH, Reddick RL et al (1992) Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258(5081):468–471

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Olga Ermakova or Cornelius Gross.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ermakova, O., Salimova, E., Piszczek, L. et al. Construction and phenotypic analysis of mice carrying a duplication of the major histocompatibility class I (MHC-I) locus. Mamm Genome 23, 443–453 (2012). https://doi.org/10.1007/s00335-012-9401-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-012-9401-7

Keywords

Navigation