Skip to main content
Log in

Gene-gene interaction between tuberculosis candidate genes in a South African population

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

In a complex disease such as tuberculosis (TB) it is increasingly evident that gene-gene interactions play a far more important role in an individual’s susceptibility to develop the disease than single polymorphisms on their own, as one gene can enhance or hinder the expression of another gene. Gene-gene interaction analysis is a new approach to elucidate susceptibility to TB. The possibility of gene-gene interactions was assessed, focusing on 11 polymorphisms in nine genes (DC-SIGN, IFN-γ, IFNGR1, IL-8, IL-1Ra, MBL, NRAMP1, RANTES, and SP-D) that have been associated with TB, some repeatedly. An optimal model, which best describes and predicts TB case–control status, was constructed. Significant interactions were detected between eight pairs of variants. The models fitted the observed data extremely well, with p < 0.0001 for all eight models. A highly significant interaction was detected between INFGR1 and NRAMP1, which is not surprising because macrophage activation is greatly enhanced by IFN-γ and IFN-γ response elements that are present in the human NRAMP1 promoter region, providing further evidence for their interaction. This study enabled us to test the theory that disease outcome may be due to interaction of several gene effects. With eight instances of statistically significant gene-gene interactions, the importance of epistasis is clearly identifiable in this study. Methods for studying gene-gene interactions are based on a multilocus and multigene approach, consistent with the nature of complex-trait diseases, and may provide the paradigm for future genetic studies of TB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Awomoyi AA, Nejentsev S, Richardson A, Hull J, Koch O et al (2004) No association between interferon-gamma receptor-1 gene polymorphism and pulmonary tuberculosis in a Gambian population sample. Thorax 59:291–294

    Article  CAS  PubMed  Google Scholar 

  • Barreiro LB, Neyrolles O, Babb CL, Tailleux L, Quach H et al (2006) Promoter variation in the DC-SIGN encoding gene CD209 is associated with tuberculosis. PLoS Med 3:e20

    Article  PubMed  Google Scholar 

  • Bellamy R, Ruwende C, Corrah T, McAdam KP, Whittle HC et al (1998a) Assessment of the interleukin 1 gene cluster and other candidate gene polymorphisms in host susceptibility to tuberculosis. Tuber Lung Dis 79:83–89

    Article  CAS  PubMed  Google Scholar 

  • Bellamy R, Ruwende C, Corrah T, McAdam KP, Whittle HC et al (1998b) Variations in the NRAMP1 gene and susceptibility to tuberculosis in West Africans. New Engl J Med 338:640–644

    Article  CAS  PubMed  Google Scholar 

  • Bergholdt R, Taxvig C, Eising S, Nerup J, Pociot F (2005) CBLB variants in type 1 diabetes and their genetic interaction with CTLA4. J Leukoc Biol 77:579–585

    Article  CAS  PubMed  Google Scholar 

  • Bulat-Kardum L, Etokebe GE, Knezevic J, Balen S, Matakovic-Mileusnic N et al (2006) Interferon-gamma receptor-1 gene promoter polymorphisms (G-611A; T-56C) and susceptibility to tuberculosis. Scand J Immunol 63:142–150

    Article  CAS  PubMed  Google Scholar 

  • Buzas EI, Gyorgy B, Pasztoi M, Jelinek I, Falus A et al (2006) Carbohydrate recognition systems in autoimmunity. Autoimmunity 39:691–704

    Article  CAS  PubMed  Google Scholar 

  • Chu SF, Tam CM, Wong HS, Kam KM, Lau YL et al (2007) Association between RANTES functional polymorphisms and tuberculosis in Hong Kong Chinese. Genes Immun 8:475–479

    Article  CAS  PubMed  Google Scholar 

  • Clayton DG (2009) Prediction and interaction in complex disease genetics: experience in type 1 diabetes. PLoS Genet 5:e1000540

    Article  PubMed  Google Scholar 

  • Comstock GW (1978) Tuberculosis in twins, a re-analysis of the Prophit survey. Am Rev Respir Dis 117:621–624

    CAS  PubMed  Google Scholar 

  • Cooke GS, Campbell SJ, Sillah J, Gustafson P, Bah B et al (2006) Polymorphism within the interferon-gamma/receptor complex is associated with pulmonary tuberculosis. Am J Respir Crit Care Med 174:339–343

    Article  CAS  PubMed  Google Scholar 

  • Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG et al (1993) Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med 178:2243–2247

    Article  CAS  PubMed  Google Scholar 

  • Cordell HJ (2009) Detecting gene–gene interactions that underlie human diseases. Nat Rev Genet 10:392–404

    Article  CAS  PubMed  Google Scholar 

  • Daniel TM (1997) Captain of death, the story of tuberculosis. University of Rochester Press, Rochester, NY

    Google Scholar 

  • de Wit E, Delport W, Rugamika CE, Meintjes A, Moller M et al (2010) Genome-wide analysis of the structure of the South African Coloured population in the Western Cape. Hum Genet 128:145–153

    Article  PubMed  Google Scholar 

  • Delgado JC, Baena A, Thim S, Goldfeld AE (2002) Ethnic-specific genetic associations with pulmonary tuberculosis. J Infect Dis 186:1463–1468

    Article  CAS  PubMed  Google Scholar 

  • Delves PJ, Roitt IM (2000) The immune system. Second of two parts. N Engl J Med 343:108–117

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Newman B, Dunne MP, Silburn PA, Mellick GD (2004) Case-only study of interactions between genetic polymorphisms of GSTM1, P1, T1 and Z1 and smoking in Parkinson’s disease. Neurosci Lett 366:326–331

    Article  CAS  PubMed  Google Scholar 

  • Diangelo S, Lin Z, Wang G, Phillips S, Ramet M et al (1999) Novel, non-radioactive, simple and multiplex PCR-cRFLP methods for genotyping human SP-A and SP-D marker alleles. Dis Markers 15:269–281

    CAS  PubMed  Google Scholar 

  • Dinarello CA, Novick D, Puren AJ, Fantuzzi G, Shapiro L et al (1998) Overview of interleukin-18, more than an interferon-gamma inducing factor. J Leukoc Biol 63:658–664

    CAS  PubMed  Google Scholar 

  • Dorman SE, Picard C, Lammas D, Heyne K, van Dissel JT et al (2004) Clinical features of dominant and recessive interferon gamma receptor 1 deficiencies. Lancet 364:2113–2121

    Article  CAS  PubMed  Google Scholar 

  • Ducati RG, Ruffino-Netto A, Basso LA, Santos DS (2006) The resumption of consumption—a review on tuberculosis. Mem Inst Oswaldo Cruz 101:697–714

    Article  CAS  PubMed  Google Scholar 

  • Dye C, Garnett GP, Sleeman K, Williams BG (1998) Prospects for worldwide tuberculosis control under the WHO DOTS strategy. Directly observed short-course therapy. Lancet 352:1886–1891

    Article  CAS  PubMed  Google Scholar 

  • Floros J, Lin HM, Garcia A, Salazar MA, Guo X et al (2000) Surfactant protein genetic marker alleles identify a subgroup of tuberculosis in a Mexican population. J Infect Dis 182:1473–1478

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Laorden MI, Pena MJ, Caminero JA, Garcia-Saavedra A, Campos-Herrero MI et al (2006) Influence of mannose-binding lectin on HIV infection and tuberculosis in a Western-European population. Mol Immunol 43:2143–2150

    Article  CAS  PubMed  Google Scholar 

  • Geijtenbeek TBH, van Vliet SJ, Koppel EA, Sanchez-Hernandez M, Vandenbroucke-Grauls CMJE et al (2003) Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med 197:7–17

    Article  CAS  PubMed  Google Scholar 

  • Hoal EG, Lewis LA, Jamieson SE, Tanzer F, Rossouw M et al (2004) SLC11A1 (NRAMP1) but not SLC11A2 (NRAMP2) polymorphisms are associated with susceptibility to tuberculosis in a high-incidence community in South Africa. Int J Tuberc Lung Dis 8:1464–1471

    CAS  PubMed  Google Scholar 

  • Hoal-van Helden EG, Epstein J, Victor TC, Hon D, Lewis LA et al (1999) Mannose-binding protein B allele confers protection against tuberculous meningitis. Pediatr Res 45:459–464

    Article  CAS  PubMed  Google Scholar 

  • Holmskov U, Thiel S, Jensenius JC (2003) Collections and ficolins, humoral lectins of the innate immune defense. Annu Rev Immunol 21:547–578

    Article  CAS  PubMed  Google Scholar 

  • Jack DL, Read RC, Tenner AJ, Frosch M, Turner MW et al (2001) Mannose-binding lectin regulates the inflammatory response of human professional phagocytes to Neisseria meningitidis serogroup B. J Infect Dis 184:1152–1162

    Article  CAS  PubMed  Google Scholar 

  • Ji X, Gewurz H, Spear GT (2005) Mannose binding lectin (MBL) and HIV. Mol Immunol 42:145–152

    Article  CAS  PubMed  Google Scholar 

  • Kim HB, Lee YC, Lee SY, Jung J, Jin HS et al (2006) Gene-gene interaction between IL-13 and IL-13Ralpha1 is associated with total IgE in Korean children with atopic asthma. J Hum Genet 51:1055–1062

    Article  CAS  PubMed  Google Scholar 

  • Koeleman BP, Lie BA, Undlien DE, Dudbridge F, Thorsby E et al (2004) Genotype effects and epistasis in type 1 diabetes and HLA-DQ trans dimer associations with disease. Genes Immun 5:381–388

    Article  CAS  PubMed  Google Scholar 

  • Lee SG, Kim BS, Kim JH, Lee SY, Choi SO et al (2004) Gene-gene interaction between interleukin-4 and interleukin-4 receptor alpha in Korean children with asthma. Clin Exp Allergy 34:1202–1208

    Article  CAS  PubMed  Google Scholar 

  • Li HT, Zhang TT, Zhou YQ, Huang QH, Huang J (2006) SLC11A1 (formerly NRAMP1) gene polymorphisms and tuberculosis susceptibility, a meta-analysis. Int J Tuberc Lung Dis 10:3–12

    CAS  PubMed  Google Scholar 

  • Liu W, Cao WC, Zhang CY, Tian L, Wu XM et al (2004) VDR and NRAMP1 gene polymorphisms in susceptibility to pulmonary tuberculosis among the Chinese Han population, a case-control study. Int J Tuberc Lung Dis 8:428–434

    CAS  PubMed  Google Scholar 

  • Lopez-Maderuelo D, Arnalich F, Serantes R, Gonzalez A, Codoceo R et al (2003) Interferon-gamma and interleukin-10 gene polymorphisms in pulmonary tuberculosis. Am J Respir Crit Care Med 167:970–975

    Article  PubMed  Google Scholar 

  • Ma X, Reich RA, Wright JA, Tooker HR, Teeter LD et al (2003) Association between interleukin-8 gene alleles and human susceptibility to tuberculosis disease. J Infect Dis 188:349–355

    Article  CAS  PubMed  Google Scholar 

  • Maartens G, Wilkinson RJ (2007) Tuberculosis. Lancet 370:2030–2043

    Article  PubMed  Google Scholar 

  • Madsen HO, Garred P, Thiel S, Kurtzhals JA, Lamm LU et al (1995) Interplay between promoter and structural gene variants control basal serum level of mannan-binding protein. J Immunol 155:3013–3020

    CAS  PubMed  Google Scholar 

  • Malik S, Abel L, Tooker H, Poon A, Simkin L et al (2005) Alleles of the NRAMP1 gene are risk factors for pediatric tuberculosis disease. Proc Natl Acad Sci USA 102:12183–12188

    Article  CAS  PubMed  Google Scholar 

  • Martinez A, Sanchez E, Valdivia A, Orozco G, Lopez-Nevot MA et al (2006) Epistatic interaction between FCRL3 and NFkappaB1 genes in Spanish patients with rheumatoid arthritis. Ann Rheum Dis 65:1188–1191

    Article  CAS  PubMed  Google Scholar 

  • Möller M, Hoal EG (2010) Current findings, challenges and novel approaches in human genetic susceptibility to tuberculosis. Tuberculosis 90:71–83

    Article  PubMed  Google Scholar 

  • Munch Z, Van Lill SWP, Booysen CN, Zietsman HL, Enarson DA et al (2003) Tuberculosis transmission patterns in a high-incidence area, a spatial analysis. Int J Tuberc Lung Dis 7:271–277

    CAS  PubMed  Google Scholar 

  • Murtha AP, Nieves A, Hauser ER, Swamy GK, Yonish BA et al (2006) Association of maternal IL-1 receptor antagonist intron 2 gene polymorphism and preterm birth. Am J Obstet Gynecol 195:1249–1253

    Article  CAS  PubMed  Google Scholar 

  • Nagel RL (2005) Epistasis and the genetics of human diseases. C R Biol 328:606–615

    Article  CAS  PubMed  Google Scholar 

  • Nyholt DR (2004) A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am J Hum Genet 74:765–769

    Article  CAS  PubMed  Google Scholar 

  • Pacheco AG, Cardoso CC, Moraes MO (2008) IFNG +874T/A, IL10 −1082G/A and TNF −308G/A polymorphisms in association with tuberculosis susceptibility, a meta-analysis study. Hum Genet 123:477–484

    Article  CAS  PubMed  Google Scholar 

  • Pankratz N, Nichols WC, Uniacke SK, Halter C, Murrell J et al (2003) Genome-wide linkage analysis and evidence of gene-by-gene interactions in a sample of 362 multiplex Parkinson disease families. Hum Mol Genet 12:2599–2608

    Article  CAS  PubMed  Google Scholar 

  • Perneger TV (1998) What’s wrong with Bonferroni adjustments. BMJ 316:1236–1238

    CAS  PubMed  Google Scholar 

  • Quintana-Murci L, Harmant C, Quach H, Balanovsky O, Zaporozhchenko V et al (2010) Strong maternal Khoisan contribution to the South African Coloured population: a case of gender-biased admixture. Am J Hum Genet 86:611–620

    Article  CAS  PubMed  Google Scholar 

  • Raza S, Robertson KA, Lacaze PA, Page D, Enright AJ et al (2008) A logic-based diagram of signalling pathways central to macrophage activation. BMC Syst Biol 2:36

    Article  PubMed  Google Scholar 

  • Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD et al (2001) Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 69:138–147

    Article  CAS  PubMed  Google Scholar 

  • Rossouw M, Nel HJ, Cooke GS, van Helden PD, Hoal EG (2003) Association between tuberculosis and a polymorphic NFkappaB binding site in the interferon gamma gene. Lancet 361:1871–1872

    Article  CAS  PubMed  Google Scholar 

  • Searle S, Blackwell JM (1999) Evidence for a functional repeat polymorphism in the promoter of the human NRAMP1 gene that correlates with autoimmune versus infectious disease susceptibility. J Med Genet 36:295–299

    CAS  PubMed  Google Scholar 

  • Skwor TA, Sedberry AS, Mackie JT, Russell K, Berghman LR et al (2006) BCG vaccination of guinea pigs modulates Mycobacterium tuberculosis-induced CCL5 (RANTES) production in vitro and in vivo. Tuberculosis (Edinb) 86:419–429

    Article  CAS  Google Scholar 

  • Soborg C, Madsen HO, Andersen AB, Lillebaek T, Kok-Jensen A et al (2003) Mannose-binding lectin polymorphisms in clinical tuberculosis. J Infect Dis 188:777–782

    Article  CAS  PubMed  Google Scholar 

  • Sorensen TI, Nielsen GG, Andersen PK, Teasdale TW (1988) Genetic and environmental influences on premature death in adult adoptees. New Engl J Med 318:727–732

    Article  CAS  PubMed  Google Scholar 

  • Tailleux L, Maeda N, Nigou J, Gicquel B, Neyrolles O (2003) How is the phagocyte lectin keyboard played? Master class lesson by Mycobacterium tuberculosis. Trends Microbiol 11:259–263

    Article  CAS  PubMed  Google Scholar 

  • Tarlow JK, Blakemore AI, Lennard A, Solari R, Hughes HN et al (1993) Polymorphism in human IL-1 receptor antagonist gene intron 2 is caused by variable numbers of an 86-bp tandem repeat. Hum Genet 91:403–404

    Article  CAS  PubMed  Google Scholar 

  • Tsai CT, Fallin D, Chiang FT, Hwang JJ, Lai LP et al (2003) Angiotensinogen gene haplotype and hypertension, interaction with ACE gene I allele. Hypertension 41:9–15

    Article  CAS  PubMed  Google Scholar 

  • Tso HW, Ip WK, Chong WP, Tam CM, Chiang AK et al (2005) Association of interferon gamma and interleukin 10 genes with tuberculosis in Hong Kong Chinese. Genes Immun 6:358–363

    Article  CAS  PubMed  Google Scholar 

  • Turner MW (2003) The role of mannose-binding lectin in health and disease. Mol Immunol 40:423–429

    Article  CAS  PubMed  Google Scholar 

  • Turner MW, Johnson M, Booth C, Klein N, Rolland J et al (2003) Assays for human mannose-binding lectin. J Immunol Methods 276:147–149

    Article  CAS  PubMed  Google Scholar 

  • Velez DR, Hulme WF, Myers JL, Stryjewski ME, Abbate E et al (2009a) Association of SLC11A1 with tuberculosis and interactions with NOS2A and TLR2 in African-Americans and Caucasians. Int J Tuberc Lung Dis 13:1068–1076

    CAS  PubMed  Google Scholar 

  • Velez DR, Hulme WF, Myers JL, Weinberg JB, Levesque MC et al (2009b) NOS2A, TLR4, and IFNGR1 interactions influence pulmonary tuberculosis susceptibility in African-Americans. Hum Genet 126:643–653

    Article  CAS  PubMed  Google Scholar 

  • Vidyarani M, Selvaraj P, Prabhu AS, Jawahar MS, Adhilakshmi AR et al (2006) Interferon gamma (IFNgamma) & interleukin-4 (IL-4) gene variants & cytokine levels in pulmonary tuberculosis. Indian J Med Res 124:403–410

    CAS  PubMed  Google Scholar 

  • Williams SM, Addy JH, Phillips JA, Dai M, Kpodonu J et al (2000) Combinations of variations in multiple genes are associated with hypertension. Hypertension 36:2–6

    CAS  PubMed  Google Scholar 

  • Witkin SS, Gerber S, Ledger WJ (2002) Influence of interleukin-1 receptor antagonist gene polymorphism on disease. Clin Infect Dis 34:204–209

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all the participants in this study.

Disclosures

The authors have no conflicts of interest or financial ties to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eileen G. Hoal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Wit, E., van der Merwe, L., van Helden, P.D. et al. Gene-gene interaction between tuberculosis candidate genes in a South African population. Mamm Genome 22, 100–110 (2011). https://doi.org/10.1007/s00335-010-9280-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-010-9280-8

Keywords

Navigation