Skip to main content
Log in

Structural and functional analysis of the ovine laminin receptor gene (RPSA): Possible involvement of the LRP/LR protein in scrapie response

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Scrapie is a prion disease affecting sheep and goats. Susceptibility to this neurodegenerative disease shows polygenic variance. The involvement of the laminin receptor (LRP/LR) in the metabolism and propagation of prions has previously been demonstrated. In the present work, the ovine laminin receptor gene (RPSA) was isolated, characterized, and mapped to ovine chromosome OAR19q13. Real-time RT-PCR revealed a significant decrease in RPSA mRNA in cerebellum after scrapie infection. Conversely, no differences were detected in other brain regions such as diencephalon and medulla oblongata. Association analysis showed that a polymorphism reflecting the presence of a RPSA pseudogene was overrepresented in a group of sheep resistant to scrapie infection. No amino acid change in the LRP/LR protein was found in the 126 sheep analyzed. However, interesting amino acid positions (241, 272, and 290), which could participate in the species barrier to scrapie and maybe to other transmissible spongiform encephalopathies, were identified by comparing LRP/LR sequences from various mammals with variable levels of resistance to scrapie.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adjou KT, Simoneau S, Sales N, Lamoury F, Dormont D et al. (2003) A novel generation of heparan sulfate mimetics for the treatment of prion diseases. J Gen Virol 84:2595–2603

    Article  PubMed  CAS  Google Scholar 

  • Asano Y, Takashima S, Asakura M, Shintani Y, Liao Y et al. (2004) Lamr1 functional retroposon causes right ventricular dysplasia in mice. Nat Genet 36:123–130

    Article  PubMed  CAS  Google Scholar 

  • Auth D, Brawerman G (1992) A 33-kDa polypeptide with homology to the laminin receptor: component of translation machinery. Proc Natl Acad Sci USA 89:4368–4372

    Article  PubMed  CAS  Google Scholar 

  • Balakirev ES, Ayala FJ (2003) Pseudogenes: are they “junk” or functional DNA? Annu Rev Genet 37:123–151

    Article  PubMed  CAS  Google Scholar 

  • Baloui H, von Boxberg Y, Vinh J, Weiss S, Rossier J et al. (2004) Cellular prion protein/laminin receptor: distribution in adult central nervous system and characterization of an isoform associated with a subtype of cortical neurons. Eur J Neurosci 20:2605–2616

    Article  PubMed  Google Scholar 

  • Baylis M, Chihota C, Stevenson E, Goldmann W, Smith A et al. (2004) Risk of scrapie in British sheep of different prion protein genotype. J Gen Virol 85:2735–2740

    Article  PubMed  CAS  Google Scholar 

  • Ben-Zaken O, Tzaban S, Tal Y, Horonchik L, Esko JD et al. (2003) Cellular heparan sulfate participates in the metabolism of prions. J Biol Chem 278:40041–40049

    Article  PubMed  CAS  Google Scholar 

  • Caplazi P, O’Rourke K, Wolf C, Shaw D, Baszler TV (2004) Biology of PrPsc accumulation in two natural scrapie-infected sheep flocks. J Vet Diagn Invest 16:489–496

    PubMed  Google Scholar 

  • Castilla J, Gutierrez-Adan A, Brun A, Doyle D, Pintado B et al. (2004) Subclinical bovine spongiform encephalopathy infection in transgenic mice expressing porcine prion protein. J Neurosci 24:5063–5069

    Article  PubMed  CAS  Google Scholar 

  • Castronovo V, Claysmith AP, Barker KT, Cioce V, Krutzsch HC et al. (1991) Biosynthesis of the 67 kDa high affinity laminin receptor. Biochem Biophys Res Commun 177:177–183

    Article  PubMed  CAS  Google Scholar 

  • Clausse N, Jackers P, Jares P, Joris B, Sobel ME et al. (1996) Identification of the active gene coding for the metastasis-associated 37LRP/p40 multifunctional protein. DNA Cell Biol 15:1009–1023

    PubMed  CAS  Google Scholar 

  • Crawford AM, Dodds KG, Ede AJ, Pierson CA, Montgomery GW, et al. (1995) An autosomal genetic linkage map of the sheep genome. Genetics 140:703–724

    PubMed  CAS  Google Scholar 

  • Creighton TE (1992) Protein folding pathways determined using disulphide bonds. Bioessays 14:195–199

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Crespo D, Juste R, Hurtado A (2005) Selection of ovine housekeeping genes for normalisation by real-time RT-PCR; analysis of PrP gene expression and genetic susceptibility to scrapie. BMC Vet Res 1:3

    Article  PubMed  CAS  Google Scholar 

  • Gauczynski S, Peyrin JM, Haik S, Leucht C, Hundt C et al. (2001) The 37-kDa/67-kDa laminin receptor acts as the cell-surface receptor for the cellular prion protein. EMBO J 20:5863–5875

    Article  PubMed  CAS  Google Scholar 

  • Gauczynski S, Nikles D, El-Gogo S, Papy-Garcia D, Rey C et al. (2006) The 37-kDa/67-kDa laminin receptor acts as a receptor for infectious prions and is inhibited by polysulfated glycanes. J Infect Dis 194:702–709

    Article  PubMed  CAS  Google Scholar 

  • Goldmann W, Baylis M, Chihota C, Stevenson E, Hunter N (2005) Frequencies of PrP gene haplotypes in British sheep flocks and the implications for breeding programmes. J Appl Microbiol 98:1294–1302

    Article  PubMed  CAS  Google Scholar 

  • Hayes H, Petit E, Dutrillaux B (1991) Comparison of RBG-banded karyotypes of cattle, sheep and goats. Cytogenet Cell Genet 57:51–55

    Article  PubMed  CAS  Google Scholar 

  • Hirotsune S, Yoshida N, Chen A, Garrett L, Sugiyama F et al. (2003) An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene. Nature 423:91–96

    Article  PubMed  CAS  Google Scholar 

  • Horonchik L, Tzaban S, Ben-Zaken O, Yedidia Y, Rouvinski A et al. (2005) Heparan sulfate is a cellular receptor for purified infectious prions. J Biol Chem 280:17062–17067

    Article  PubMed  CAS  Google Scholar 

  • Hundt C, Peyrin JM, Haik S, Gauczynski S, Leucht C et al. (2001) Identification of interaction domains of the prion protein with its 37-kDa/67-kDa laminin receptor. EMBO J 20:5876–5886

    Article  PubMed  CAS  Google Scholar 

  • Jackers P, Clausse N, Fernandez M, Berti A, Princen F et al. (1996) Seventeen copies of the human 37 kDa laminin receptor precursor/p40 ribosome-associated protein gene are processed pseudogenes arisen from retropositional events. Biochim Biophys Acta 1305:98–104

    PubMed  Google Scholar 

  • Karpatova M, Tagliabue E, Castronovo V, Magnifico A, Ardini E et al. (1996) Shedding of the 67-kD laminin receptor by human cancer cells. J Cell Biochem 60:226–234

    Article  PubMed  CAS  Google Scholar 

  • Kim WH, Lee BL, Jun SH, Song SY, Kleinman HK (1998) Expression of 32/67-kDa laminin receptor in laminin adhesion-selected human colon cancer cell lines. Br J Cancer 77:15–20

    PubMed  CAS  Google Scholar 

  • Kinoshita K, Kaneda Y, Sato M, Saeki Y, Wataya-Kaneda M et al. (1998) LBP-p40 binds DNA tightly through associations with histones H2A, H2B, and H4. Biochem Biophys Res Commun 253:277–282

    Article  PubMed  CAS  Google Scholar 

  • Kiss AM, Jady BE, Bertrand E, Kiss T (2004) Human box H/ACA pseudouridylation guide RNA machinery. Mol Cell Biol 24:5797–5807

    Article  PubMed  CAS  Google Scholar 

  • Knorr C, Beuermann C, Beck J, Brenig B (2007) Characterization of the porcine multicopy ribosomal protein SA/37-kDa laminin receptor gene family. Gene 395:135–143

    Article  PubMed  CAS  Google Scholar 

  • Kocisko DA, Priola SA, Raymond GJ, Chesebro B, Lansbury PT Jr et al. (1995) Species specificity in the cell-free conversion of prion protein to protease-resistant forms: a model for the scrapie species barrier. Proc Natl Acad Sci USA 92:3923–3927

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Green P (1987) Construction of multilocus genetic linkage maps in humans. Proc Natl Acad Sci USA 84:2363–2367

    Article  PubMed  CAS  Google Scholar 

  • Landowski TH, Dratz EA, Starkey JR (1995) Studies of the structure of the metastasis-associated 67 kDa laminin binding protein: fatty acid acylation and evidence supporting dimerization of the 32 kDa gene product to form the mature protein. Biochemistry 34:11276–11287

    Article  PubMed  CAS  Google Scholar 

  • Leucht C, Simoneau S, Rey C, Vana K, Rieger R et al. (2003) The 37 kDa/67 kDa laminin receptor is required for PrP(Sc) propagation in scrapie-infected neuronal cells. EMBO Rep 4:290–295

    Article  PubMed  CAS  Google Scholar 

  • Ligios C, Jeffrey M, Ryder SJ, Bellworthy SJ, Simmons MM (2002) Distinction of scrapie phenotypes in sheep by lesion profiling. J Comp Pathol 127:45–57

    Article  PubMed  CAS  Google Scholar 

  • Lyahyai J, Bolea R, Serrano C, Monleón E, Moreno C et al. (2006) Correlation between Bax overexpression and prion deposition in medulla oblongata from natural scrapie without evidence of apoptosis. Acta Neuropathol (Berl) 112:451–460

    Article  CAS  Google Scholar 

  • Lysek DA, Schorn C, Nivon LG, Esteve-Moya V, Christen B et al. (2005) Prion protein NMR structures of cats, dogs, pigs, and sheep. Proc Natl Acad Sci USA 102:640–645

    Article  PubMed  CAS  Google Scholar 

  • Lloyd SE, Onwuazor ON, Beck JA, Mallinson G, Farrall M et al. (2001) Identification of multiple quantitative trait loci linked to prion disease incubation period in mice. Proc Natl Acad Sci USA 98:6279–6283

    Article  PubMed  CAS  Google Scholar 

  • Lloyd SE, Uphill JB, Targonski PV, Fisher EM, Collinge J (2002) Identification of genetic loci affecting mouse-adapted bovine spongiform encephalopathy incubation time in mice. Neurogenetics 4:77–81

    Article  PubMed  CAS  Google Scholar 

  • Maddox JF, Davies KP, Crawford AM, Hulme DJ, Vaiman D et al. (2001) An enhanced linkage map of the sheep genome comprising more than 1000 loci. Genome Res 11:1275–1289

    Article  PubMed  CAS  Google Scholar 

  • Manolakou K, Beaton J, McConnell I, Farquar C, Manson J et al. (2001) Genetic and environmental factors modify bovine spongiform encephalopathy incubation period in mice. Proc Natl Acad Sci USA 98:7402–7407

    Article  PubMed  CAS  Google Scholar 

  • Mariottini P, Amaldi F (1990) The 5′ untranslated region of mRNA for ribosomal protein S19 is involved in its translational regulation during Xenopus development. Mol Cell Biol 10:816–822

    PubMed  CAS  Google Scholar 

  • Miller S, Dykes D, Polesky H (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215

    Article  PubMed  CAS  Google Scholar 

  • Morel E, Andrieu T, Casagrande F, Gauczynski S, Weiss S et al. (2005) Bovine prion is endocytosed by human enterocytes via the 37 kDa/67 kDa laminin receptor. Am J Pathol 167:1033–1042

    PubMed  CAS  Google Scholar 

  • Moreno CR, Cosseddu GM, Andreoletti IO, Schibler L, Roig A et al (2003a) Identification of quantitative trait loci (QTL) modulating prion incubation period in sheep. Proceedings of the International Workshop on Major Genes and QTL in Sheep and Goat, Toulouse

  • Moreno CR, Lantier F, Lantier I, Sarradin P, Elsen JM (2003b) Detection of new quantitative trait loci for susceptibility to transmissible spongiform encephalopathies in mice. Genetics 165:2085–2091

    PubMed  CAS  Google Scholar 

  • Nag MK, Thai TT, Ruff EA, Selvamurugan N, Kunnimalaiyaan M et al. (1993) Genes for E1, E2, and E3 small nucleolar RNAs. Proc Natl Acad Sci USA 90:9001–9005

    Article  PubMed  CAS  Google Scholar 

  • Priola SA, Caughey B, Race RE, Chesebro B (1994) Heterologous PrP molecules interfere with accumulation of protease-resistant PrP in scrapie-infected murine neuroblastoma cells. J Virol 68:4873–4878

    PubMed  CAS  Google Scholar 

  • Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95:13363–13383

    Article  PubMed  CAS  Google Scholar 

  • Rabacchi SA, Neve RL, Drager UC (1990) A positional marker for the dorsal embryonic retina is homologous to the high-affinity laminin receptor. Development 109:521–531

    PubMed  CAS  Google Scholar 

  • Rao M, Manishen WJ, Maheshwari Y, Sykes DE, Siyanova EY et al. (1994) Laminin receptor expression in rat intestine and liver during development and differentiation. Gastroenterology 107:764–772

    PubMed  CAS  Google Scholar 

  • Rieger R, Edenhofer F, Lasmezas CI, Weiss S (1997) The human 37-kDa laminin receptor precursor interacts with the prion protein in eukaryotic cells. Nat Med 3:1383–1388

    Article  PubMed  CAS  Google Scholar 

  • SAS Institute Inc. (1989) SAS/STAT® Users’s Guide, version 6, 4th ed., vol. 1 (Cary, NC: SAS Institute, Inc.)

  • Scott M, Groth D, Foster D, Torchia M, Yang SL et al. (1993) Propagation of prions with artificial properties in transgenic mice expressing chimeric PrP genes. Cell 73:979–988

    Article  PubMed  CAS  Google Scholar 

  • Selvamurugan N, Eliceiri GL (1995) The gene for human E2 small nucleolar RNA resides in an intron of a laminin-binding protein gene. Genomics 30:400–401

    PubMed  CAS  Google Scholar 

  • Shmakov AN, Bode J, Kilshaw PJ, Ghosh S (2000) Diverse patterns of expression of the 67-kD laminin receptor in human small intestinal mucosa: potential binding sites for prion proteins? J Pathol 191:318–322

    Article  PubMed  CAS  Google Scholar 

  • Simoneau S, Haik S, Leucht C, Dormont D, Deslys JP et al. (2003) Different isoforms of the non-integrin laminin receptor are present in mouse brain and bind PrP. Biol Chem 384:243–246

    Article  PubMed  CAS  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  PubMed  CAS  Google Scholar 

  • Stephenson DA, Chiotti K, Ebeling C, Groth D, DeArmond SJ et al. (2000) Quantitative trait loci affecting prion incubation time in mice. Genomics 69:47–53

    Article  PubMed  CAS  Google Scholar 

  • Vaiman D, Billault A, Tabet-Aoul K, Schibler L, Vilette D et al. (1999) Construction and characterization of a sheep BAC library of three genome equivalents. Mamm Genome 10:585–587

    Article  PubMed  CAS  Google Scholar 

  • Vana K, Weiss S (2006) A trans-dominant negative 37 kDa/67 kDa laminin receptor mutant impairs PrP(Sc) propagation in scrapie-infected neuronal cells. J Mol Biol 358:57–66

    Article  PubMed  CAS  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N et al. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034

    Google Scholar 

  • Vidal E, Bolea R, Tortosa R, Costa C, Domènech A et al. (2006) Assessment of calcium-binding proteins (Parvalbumin and Calbindin D-28 K) and perineuronal nets in normal and scrapie-affected adult sheep brains. J Virol Meth 36:137–146

    Article  CAS  Google Scholar 

  • Vorberg I, Groschup MH, Pfaff E, Priola SA (2003) Multiple amino acid residues within the rabbit prion protein inhibit formation of its abnormal isoform. J Virol 77:2003–2009

    Article  PubMed  CAS  Google Scholar 

  • Yenofsky R, Bergmann I, Brawerman G (1982) Messenger RNA species partially in a repressed state in mouse sarcoma ascites cells. Proc Natl Acad Sci USA 79:5876–5880

    Article  PubMed  CAS  Google Scholar 

  • Yenofsky R, Cereghini S, Krowczynska A, Brawerman G (1983) Regulation of mRNA utilization in mouse erythroleukemia cells induced to differentiate by exposure to dimethyl sulfoxide. Mol Cell Biol 3:1197–1203

    PubMed  CAS  Google Scholar 

  • Yow H, Wong JM, Chen HS, Lee C, Steele GD et al. (1988) Increased mRNA expression of a laminin-binding protein in human colon carcinoma: complete sequence of a full-length cDNA encoding the protein. Proc Natl Acad Sci USA 85:6394–6398

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the CERSYRA-Valdepeñas and AGRAMA breeders association, CSIC-León, CITA-Aragón, Prion Research Centre of the University of Zaragoza, INIA-Madrid, and ETSIA-Polytechnique University of Madrid for kindly providing Manchega, Awassi, Assaf, Rasa Aragonesa, and rabbit samples. The authors are very grateful to Dr. C. Mansilla and Dr. F. Ponz for helping improve the RT-PCR, to Dr. K.G. Dodds for correcting the English of the manuscript, to Dr. M.E.F. Alves for her continuous help, and to Dr. E.P. Cribiu and Dr. P. Zaragoza for allowing us to perform the cytogenetic mapping and the expression analysis in their respective laboratories. This work was supported by the RTA2006–00104 INIA project and a Predoctoral Grant from the INIA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ane Marcos-Carcavilla.

Appendices

Appendix

1 List of primers used to amplify and sequence the ovine RPSA gene

Appendix

2 List of primers and probes used for performing RT-PCR
figure a
Table A1

Appendix 3

Figure A1 is a representation of the PCRs that confirm the presence of a RPSA pseudogene coamplifying with the RPSA functional gene when performing the amplification reactions to test the polymorphisms located in exon 4 (represented in capital bold letters) and intron 4 (represented in lower-case) for the association analysis. Underlined and enclosed between square brackets is the snoRNA E2. Primers used are in gray. The polymorphisms found among this region are indicated in bold and underlined letters. Table A1 summarizes the primers used in the amplification and sequencing reactions as well as several animals whose genotypes for the polymorphisms at positions 198 in exon 4 and 27 and 29 in intron 4 allowed us to infer the presence of a RPSA pseudogene which was not present in all the animals analyzed. The code of each sequence is also indicated. Thus, animal A did not bear the pseudogene, so results from both PCRs are consistent. Conversely, animals B and C bore the pseudogene, which was inferred by the insertion/deletion of a G (highlighted in gray) when performing PCR1 but not PCR2. In addition, animal B was heterozygous for the SNP at position 29 in intron 4, while animal C was homozygous (TT) for the same position. However, in the last case, the TT genotype was not possible to determine from the 02P7U sequence, which included the sequence of both the gene and the pseudogene.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcos-Carcavilla, A., Calvo, J.H., González, C. et al. Structural and functional analysis of the ovine laminin receptor gene (RPSA): Possible involvement of the LRP/LR protein in scrapie response. Mamm Genome 19, 92–105 (2008). https://doi.org/10.1007/s00335-007-9085-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-007-9085-6

Keywords

Navigation